

Elite EL

Developer Guide

Nov 2010

Version 3.0.0.7

License Agreement

This document is a legal agreement between you (either an individual or an entity)

and Senselock Software Technology Co.,Ltd. ("Senselock"). If you are not willing

to be bound by the terms of this agreement, you should promptly (and at least within

3 days from the date you received this package) return the unused developer's kit

and the programmer's guide to Senselock. Use of the software indicates your

acceptance of these terms.

GRANT OF LICENSE. The Software is being licensed to you, which means you have the

right to use the Software only in accordance with this License Agreement. You may

(a) copy the software for your internal use, (b) modify the software for the purpose

of integrating the software with your application and (c) merge the software with

other programs. You may also (a) distribute the merged/modified software to your

customers provided that you enter into an agreement with them that is substantially

in the form of this Agreement to assure that they treat the software as confidential

and proprietary and (b) limit the use of the software by your customers with products

you sell to them.

NONPERMITTED USES. Without the express permission of Senselock, you may not (a) use,

copy, modify, alter, or transfer, electronically or otherwise, the Software or

documentation except as expressly permitted in this License Agreement, or (b)

translate, reverse program, disassemble, decompile, or otherwise reverse engineer

the Software.

Senselock warrants for a period of twelve (12) months after date of purchase its

software and the Senselock ELkey as set forth in this Agreement and License. All

the responsibilities of Senselock Software Technology Co.,Ltd and all the

compensation you can get during warranty period are: you can select to replace/repair

your device(s) or accept other remedial measures.

LIMITATION OF LIABILITY. Senselock will NOT in any event be liable for any damages

whatsoever arising out of or related to the use of or inability to use the product,

including but not limited to direct, indirect, special, incidental, or consequential

damages, and damages for loss of business profits, business interruption, loss of

business information, or other pecuniary loss.

All the product, including SenseLock EL™ , the software, the document, other

material shipped with this product, and backups made by you are copyrighted by

Beijing Senselock Software Technology Co.,Ltd.

TERMINATION. Your failure to comply with the terms of this Agreement shall terminate

your license and this Agreement.

―SenseLock EL‖ is registered trademarks of Beijing Senselock Software Technology Co.,Ltd.

All products referenced throughout this document are registered trademarks of their respective

proprietors.

- 1 -

Contact Information

Senselock Software Technology Co.,Ltd®

Headquarter Office Address:Rm.1201, Blk. B, ZhuCheng Mansion, ZhongGuanCun South Street,

Haidian District, Beijing P.R.China

Post:100086

Tel: +86-10-51581366

Fax:+86-10-51581365

Sales representative: sales@senselock.com

Tech service: tech@senselock.com

Website:http://www.senselock.com/

mailto:Sales@Senselock.com
mailto:Tech@Senselock.com
http://www.senselock.com/

Senselock ELDeveloper Guide Index

- 2 -

Index

1. PRODUCT INTRODUCTION ... 1

1.1. NEW SOFTWARE PROTECTION METHOD ... 1
1.2. BASIC PRODUCT COMPOSITION .. 2

1.2.1. Senselock ELDevelopment Tool Kit ... 2
1.2.2. Senselock EL Hardware Device ... 3
1.2.3. User Running Environment .. 3

1.3. IMPORTANT SECURITY PRECAUTIONS ... 3
1.3.1. PIN .. 3
1.3.2. File System .. 4

1.4. MORE FUNCTIONS .. 6

2. PRODUCT INSTALLATION ... 7

2.1. SYSTEM REQUIREMENTS .. 7
2.2. SDK INSTALLATION .. 7

2.2.1. Direction for Device Driver Installation ... 7
2.3. UNINSTALL SDK .. 8

3. PREPARATION FOR USE ... 9

3.1. DEMO SOFTWARE ... 9
3.2. CODE PORTING ... 10

3.2.1. Create a Senselock EL Project... 10
3.2.2. Compile Senselock EL Codes .. 10
3.2.3. Compile and Test Senselock EL Codes .. 11
3.2.4. Download Codes to Senselock EL Hardware .. 11
3.2.5. Modify PC Codes ... 13
3.2.6. Test Protection Results ... 15

3.3. PROGRAM STRUCTURE ANALYSIS ... 15

4. DEVELOP SENSELOCK EL CODES ... 17

4.1. COMPILE INTERNAL CODES OF SENSELOCK EL .. 17
4.1.1. Code Structure ... 17
4.1.2. Input & Output .. 18
4.1.3. Memory Structure .. 19
4.1.4. Use System Function Library Files ... 22
4.1.5. Data Type ... 23
4.1.6. Code Compilation Proposal .. 23

4.2. ACCESS SENSELOCK ELDEVICE ... 23
4.2.1. General Access .. 23
4.2.2. Developer level Access .. 25
4.2.3. User Level Access .. 28

4.3. ABOUT CODE TEST ... 30

5. DIRECTION FOR COMPILER USAGE .. 31

5.1. DIRECTION FOR KEIL C51 USAGE ... 31
5.1.1. Project Creation and Management .. 32
5.1.2. Code Compilation and Debugging Configuration ... 34
5.1.3. Code Debugging Method ... 35

5.2. DIRECTION FOR RAISONANCE RKIT USAGE .. 39
5.2.1. Project Creation and Management .. 39
5.2.2. Code Compilation and Debugging .. 42

5.3. SENSELOCK SKIT .. 43
5.4. EXECUTABLE FILE FORMAT .. 43

6. DIRECTION FOR TOOL SOFTWARE USAGE ... 44

Senselock ELDeveloper Guide Index

- 3 -

6.1. DEVELOPMENT TEST TOOL ... 44
6.1.1. Device Reconnection ... 45
6.1.2. Device Reset .. 45
6.1.3. PIN Management ... 46
6.1.4. Download Files ... 47
6.1.5. Clear Directory Content .. 48
6.1.6. Execute File ... 48
6.1.7. Autherization Management.. 49
6.1.8. PC Keys ... 49

7. DIRECTION FOR NETWORK VERSION USAGE ... 50

7.1. INTRODUCING SENSELOCK ELNETWORK VERSION .. 50
7.1.1. Features ... 50
7.1.2. Network Dongle PIN ... 51
7.1.3. Network Dongle Module .. 51

7.2. USING NETWORK VERSION SENSELOCK EL ... 51
7.2.1. Installation and uninstallation of Network Dongle Service Program............................ 51
7.2.2. Use of Network Dongle Service Management Tool ... 51
7.2.3. Use of Network Dongle API .. 53

8. SES REFERENCE ... 54

8.1. FLOW CONTROL ... 55
8.2. INPUT/OUTPUT ... 56
8.3. FILE OPERATION ... 57
8.4. MATHEMATICS .. 65
8.5. CRYPTOGRAPHIC ALGORITHM .. 120
8.6. MEMORY OPERATION ... 143
8.7. TIME ... 153
8.8. MACRO AND AUXILIARY FUNCTION .. 162
8.9. GET DEVICE INFO ... 174
8.10. SES ERROR CODE LIST... 175
8.11. DOUBLE PRECISION FLOAT BOUNDARY LIMITATION ... 176

9. API REFERENCE ... 178

9.1. API LIST ... 179
9.1.1. S4Enum .. 180
9.1.2. S4Open .. 182
9.1.3. S4OpenEx .. 183
9.1.4. S4Close .. 185
9.1.5. S4Control ... 186
9.1.6. S4CreateDir ... 190
9.1.7. S4CreateDirEx... 192
9.1.8. S4ChangeDir ... 195
9.1.9. S4EraseDir .. 196
9.1.10. S4VerifyPin .. 197
9.1.11. S4ChangePin ... 199
9.1.12. S4WriteFile .. 201
9.1.13. PS4WriteFile ... 205
9.1.14. S4Execute .. 208
9.1.15. S4ExecuteEx .. 209
9.1.16. S4Startup ... 211
9.1.17. S4Cleanup ... 211

9.2. ERROR CODE INDEX ... 212

APPENDIX A. CRYPTOGRAPHIC ALGORITHMS ... 214

A.1. KEY OPERATING FUNCTIONS .. 215
A.1.1. X_GenerateRsaKeys .. 215
A.1.2. R_GenerateRsaKeys .. 216
A.1.3. X_Pub2Cos .. 217
A.1.4. X_Pri2Cos ... 218

Senselock ELDeveloper Guide Index

- 4 -

A.1.5. X_Cos2Pub .. 219
A.1.6. X_Cos2Pri ... 220

A.2. CRYPTOGRAPHIC ALGORITHM FUNCTIONS ... 221
A.2.1. RSAPublicEncrypt ... 221
A.2.2. RSAPrivateDecrypt .. 222
A.2.3. Sign .. 223
A.2.4. Verify .. 224
A.2.5. Digest .. 225
A.2.6. DES .. 226
A.2.7. TDES ... 227

A.3. ERROR CODE INDEX ... 228

APPENDIX B. HARDWARE FEATURES ... 229

APPENDIX C. SES INDEX .. 230

APPENDIX D. DRIVER INSTALLATION API REFERENCE ... 231

D.1.1. s4drv_GetDriverInfo ... 231
D.1.2. s4drv_Install .. 233
D.1.3. s4drv_Uninstall ... 234
D.1.4. s4drv_IsNeedReboot .. 235

- 1 -

1. Product Introduction

Senselock EL is a new generation software dongle developed by Senselock Software

Technology Co.Ltd. It is now the most secure software protection product in the world.

Two key technologies guarantee software protection truly:

 Program code protection

You can transfer approximately 10,000 lines of High Level Language Program codes to

Senselock ELand execute them there. These transferred codes will not leave any trace on the

computer, nor can anyone get a copy of these codes. Your software can run on two systems:

one is the computer; the other is SenseLock EL. Piracy of the software protected by

Senselock ELis impossible because Senselock ELhardware is not copyable.

 Reliable hardware base

Uncopyability and attack protection are achieved via hardware security. To this end,

Senselock ELnot only employs the Smart Card technology, but also selects the best Smart

Card chip (which has passed security authentication by CC EAL5+
1
). If you have studied

relevant security standards carefully, you will find the hardware of Senselock ELis absolutely

trustworthy.

Senselock ELcomes up with the ―uncrackable‖ security model for the first time in the

software protection field, so it can put a complete end to piracy, thus protecting maximally the

economic benefits of software developers.

1.1. New Software Protection Method

If you have used dongles of other types, please try your best to forget the technical details of

those dongles and digest the contents of this section, because this is a cutting-edge and brand new

notion. If you have never used any dongle before, take a look at the picture below and you will

find the whole process quite easy to understand.

Do remember that there are no such concepts as ―data area‖, ―algorithm unit‖, etc., which are

all outdated. Now your dongle is provided with a complete ―operating system‖ consisting of all

files: executable files, data files and key files as well as directories, of course. You can imagine it

as a MS-DOS operating system.

Next let us take a look at how software protection is achieved (Figure 1-1).

Figure 1-1 Senselock ELSoftware Protection Method

1． Develop and debug software wholeheartedly, ignoring completely the dongle and
software protection technologies;

1 This is a very high security certification level. For details, please refer to the contents of ISO15408 standard.

Senselock ELDeveloper Guide Product Introduction

- 2 -

2． Find some relatively important codes from the software and compile these codes via the

compiler compatible with Senselock ELbefore writing into SenseLock EL;

3． Add the call of Senselock ELto where the codes are ―dug out‖ in the software;

4． When the software is run, these ported codes will run inside Senselock ELand return the

results to the software;

As part of the software is ported to the hardware of SenseLock EL, the software will be

incomplete if it is detached from SenseLock EL. As a result, it is a ―mission impossible‖ to crack

the software protected by SenseLock EL.

Each ported code part can become an independent ―executable file‖ inside SenseLock EL. Of

course, they can also be combined into one. Senselock ELcan now offer a maximum of 64K

security storage space with almost no limit over the number of files (the file header may take up

some space, so too many files will result in a waste of storage room). The total number of portable

codes is 10,000 lines or so, so Senselock ELcan protect as much software as it can be.

Attention: Despite the fact that code “porting” is the most fundamental software protection method of
SenseLock EL, this does not mean you need to discard totally the original technical strategy. Under
most circumstances, they are reciprocally complementary, yet it is imperative to remember: your
software is secure in a real sense unless the codes are ported into SenseLock EL.

1.2. Basic Product Composition

Senselock ELis not a simple dongle, so you need to develop ―dongle‖ version for some parts

of the software on its operating system
2
. This is not an arduous task. Under most circumstances,

you can make them run in Senselock ELby very simple modification of the codes since

Senselock ELsupports codes compiled with standard C language. If the software is developed via

other high-level languages, such as Delphi, you need to re-write the ported part in C language.

Although some efforts are required for the ―translation‖ between high-level languages, if

―translating‖ several hundred-line codes can keep you thoroughly away from piracy, it is

definitely worth doing. In the subsequent part of this text, we usually call the codes ported into

Senselock EL―Senselock ELApplication‖ or ―Senselock ELEXFs‖.

The Senselock ELproduct is comprised of the following parts:

 Senselock ELdevelopment tool kit

 Senselock ELhardware

 Senselock ELuser running environment

1.2.1. Senselock ELDevelopment Tool Kit

The most important part is the IDE (integrated development environment) of Senselock

ELEXF. Senselock ELsupports standard C language development. Any compiler that supports

MCS 51 or SmartXA 2 can be used to develop Senselock ELEXFs. Our SDK contains a

full-function compilation environment Skit. If you are more used to the trendy development tools,

we recommend C51 compiler by Keil Software or RKit by Raisonance SA to you. You can also

visit http://www.keil.com and http://www.rainsonance.com to get information about these two

kinds of compilation software.

Some tool software is also included in the development tool kit. They are

2 The internal operating system of Senselock ELcomplies with the international standard of the Smart Card

operating system. You can get relevant information about ―Smart Card Operating System‖ by consulting ISO7816

serial standards.

http://www.keil.com/
http://www.rainsonance.com/

Senselock ELDeveloper Guide Product Introduction

- 3 -

 Development test tool. Assisting the development and testing of codes ported to

Senselock EL and conducting simple management of the equipment;

 User test tool. It can be distributed to software ultimate users, helping them to address

the possible configuration fault;

 Batch setup tool. A high-efficiency dongle batch initialization tool;

You can find plenty of sample codes in the development tool kit as references or templates in

the middle of development.

Attention: For the details of the compiler, please refer to Chapter 5 “ Direction for Compiler Usage” ; for

the details of the tool software, please refer to Chapter 6 “ Instruction for Tool Software Usage” .

1.2.2. Senselock EL Hardware Device

Developed fully based on Smart Card technology and employing 16-bit, 16MHz

high-performance CPU, the hardware device is the running environment and storage media for

Senselock ELEXFs. Senselock EL is offered mainly as a USB interface device. As an option, it

can also be offered in the form of standard Smart Card. Senselock EL is a highly integrated

product whose devices (including CPU, RAM, EEPROM and USB communication module) are

integrated in the same Smart Card chip, thus enhancing tremendously the security and stability of

the product.

There is a global unique serial number for each Senselock EL device. This serial number is

already specified at the stage of chip production.

1.2.3. User 3 Running Environment

This is chiefly the driver of Senselock EL device. Senselock EL can run in two modes: one is

to access the device via standard USB driver. This is what we call standard mode. The other is

no-driver mode. In this case, it will be recognized by the Windows operating system as a standard

HID device. Compared with the standard mode, the no-driver mode needs to sacrifice some

advanced functions and versatility (such as multi-process access to the device), though it is easy to

operate, so we recommend the standard mode.

1.3. Important Security Precautions

Before getting started with software protection, please make sure you have already

understood the contents of this section！

1.3.1. PIN

Two levels of password are available in SenseLock EL: developer PIN and user PIN (The

password is sometimes also called ―PIN code‖ in the text). Different operation authorizations
4
 can

be obtained using different levels of PIN.

The developer PIN is 24 bytes. After the PIN is successfully authenticated, a user can get the

setup authorization for Senselock ELdevice. Although the possession of the developer PIN does

not allow for the direct reading of the data in the Senselock ELhardware, the disclosure of the

3 The ―user‖ in the text refers to ultimate software user.
4 Operation authorization is sometimes also known as ―security status‖. If the hardware device is reset or powered

off, the operation authorization will be lost. For example, after the computer sleeps, the software can continue to

run after it is restarted, but since the USB port has undergone the power-off process, the operation authorization of

the dongle will be lost, thus causing failure in operating the dongle.

Senselock ELDeveloper Guide Product Introduction

- 4 -

developer PIN will threaten critically the security of data inside SenseLock EL. When Senselock

ELis used for the first time, the default developer PIN is ―123456781234567812345678‖ (0x31

0x32 0x33 0x34 0x35 0x36 0x37 0x38 0x31 0x32 0x33 0x34 0x35 0x36 0x37

0x38 0x31 0x32 0x33 0x34 0x35 0x36 0x37 0x38). Before Senselock ELis released,

make sure to modify the default developer PIN to a secret value.

The user PIN is 8 bytes. The default value of the PIN is ―12345678‖ (0x31 0x32 0x33

0x34 0x35 0x36 0x37 0x38). The successful authentication of the user PIN can only get the

―call authorization‖ for the Senselock ELdevice. In other words, a user can call the EXFs in

SenseLock EL, but s/he is denied of access to other files such as data file. In principle, there is no

―security‖ problem with the user PIN. You can use it to check simply whether it is your dongle.

Given below are some important security details in relation to the PIN:

 Both the developer PIN and user PIN are designed for the directories in SenseLock

EL, but not for specific Senselock ELdevice. Each directory contains its own

developer PIN and user PIN. The security attributes between directories are

independent, so modifying the PIN of the root directory does not mean the PIN of

the sub-directory is modified accordingly. In the like manner, the acquisition of root

directory authorization will not allow for the acquisition of relevant sub-directory

authorization automatically. This feature allows several irrelevant software to be

protected by the dongle without reciprocal interference and threat, but deleting the

root directory will cause the contents of the sub-directory to be deleted in the

meantime.

Unless it is necessary, we do not recommend the use of multi-level directory to avoid

chaos in management.

For detailed description of the directory, please refer to the next section ―File

System‖.

 If there are 15 continuous re-trial errors for the developer PIN of the root directory,

the hardware device will be locked. Once it is locked, there is no way to recover it,

so it is imperative to keep the developer PIN of the dongle in a safe place and please

do remember that Senselock cannot recover your PIN or unlock the device. This is to

protect your security to an maximum extent.

The re-trial error in sub-directory developer PIN will only cause the directory to be

locked, but it can still be deleted by wiping the upper-level directory.

 No matter how many trials are made for user PIN, the device will never be locked.

 Whenever the file system is re-initialized, such as deleting and re-creating a root

directory, clearing the sub-directory, the two-level PINs of the directory will be both

restored to default values, so do remember to modify the developer PIN to a secret

value after the file system is re-initialized.

1.3.2. File System

Getting to know some security details regarding the file system will help create a more secure

protection solution.

Senselock ELsupports the ―directory-file‖ structure. The internal storage space of Senselock

ELis managed by directory. Given below are some key features of Senselock ELdirectories:

 There is one and only one root directory, below which there are sub-directories, but the

maximum levels of directory are three;

 To create a directory, the space occupied by the directory shall be specified. Once the

Senselock ELDeveloper Guide Product Introduction

- 5 -

directory is created, the size of it is unchangeable. The root directory takes up all the

storage space of the hardware.

 The root directory can be deleted. When the root directory is deleted, all the contents in

the directory, such as sub-directories and files will be deleted as well.

 Any directory‘s parent, sibling and child directory must not share the same directory ID.

 The sub-directory can only be cleared, but not deleted directly. Clearing the

sub-directory will delete all the contents in the directory, such as sub-directories, files,

etc. After the sub-directory is cleared, its developer level PIN and user level PIN will be

restored to default values. To wipe out the sub-directories to release all seized space, it is

necessary to clear/delete their upper-level directory.

 Net dongle only has root directory.

In SenseLock EL, there are usually three kinds of files: executable files, data files and key

files, none of which can be read directly from the hardware. Files can be created and modified

after the developer PIN is authenticated.

 Executable file

The executable file is a kind of file format that can be loaded and run on the internal

operating system of SenseLock EL. The ported codes will be compiled into executable files

in the middle of software protection. There are two kinds of executable files: VM executable

file (also known as general executable file) and XA executable file, corresponding to two

different running modes. For the detailed description of the running mode, please refer to

Chapter 4 ―Developing Senselock ELCodes‖. XA executable files are supported only by

Senselock EL whose hardware version is 2.3 or above. They surpass VM executable files in

running efficiency, but they show poorer versatility in SenseLock EL. By running the tool

software available in the product package, you can get the hardware version number of

SenseLock EL.

An executable file can operate other files in the same directory through the system

function in the hardware, such as reading and writing data files. When it comes to the

operation of executable files, the situation is somewhat complicated: it is not necessarily true

that an executable file can be read and written by another executable file. It depends on the

security attributes of itself (Please see Table 1-1).

 Data file

The data file is designed only to store binary data. The programs on the computer cannot

be read directly from the data files in SenseLock EL. To access the data files in SenseLock

EL, you need to do it via the EXF in SenseLock EL.

 Key file

Only the RSA key file is supported now. You can consult Chapter 8 ―System Function

Reference‖ for more detailed information.

We summarize the security attributes of the internal files commonly used in Senselock EL as

follows:

Table 1-1 Security Attributes of Senselock EL Files
 Developer level

(authenticate

developer PIN)

User level

(authenticate user

PIN)

Internal (internal

executable files)

Senselock ELDeveloper Guide Product Introduction

- 6 -

Executable

file

Unreadable &

unwritable

W E N

Readable & writable

internally

W E R/W

Data file W N R/W

Key file W N W

R: Read W: Write E: Execute N: None

There are more detailed specifications governing the security attributes involved in internal

file operation in SenseLock EL. For details, please refer to the concerned file operation part in

Chapter 8 ―System Function Reference‖.

The files in Senselock EL are identified via a 16-bit (2-byte) unsigned integer. Part of the IDs

are reserved by the system. They are 0x0000, 0x0015, 0x0016, 0x0018, 0x001e,

0x3f00, 0x3f01, 0x3f02, 0x3f03, 0x3f04.

1.4. More Functions

Senselock EL contains the hardware co-processor of RSA (1024 bits) and DES/TDES

cryptography algorithm and offers SHA-1 algorithm function and hardware true random number

generator. Based on these cryptography functions, Senselock presents a remote updating and sales

management platform. The software protected by Senselock EL can be billed and updated via the

Internet. By this means, the management of software sales channels can be carried out. As

Senselock opens the bottom-layer technical details for remote updating, you can create your own

remote updating and sales management platform using the bottom-layer technology offered by

Senselock.

Using the cryptography algorithms of SenseLock EL, you can also log on the Windows

operating system, encrypt and decrypt email and perform various kinds of complex network

security functions.

- 7 -

2. Product Installation

This chapter offers a guide on how to install SDK of SenseLock EL.

2.1. System Requirements

To use SDK of SenseLock EL, it is recommended to use the PC that runs the operating

system of Windows 98, Windows2000 or above. If it is installed on NT4, you need to install

Service Pack 4, IE4.0 or above first.

Senselock EL supports Microsoft Windows, Linux and Mac OS X. You can use Senselock EL

device on the above operating system.

2.2. SDK Installation

Put the CD into the CD-ROM. If the installed program is not started automatically, please

run Windows\Setup.exe in SDK CD of Senselock ELand complete the installation according to the

prompt of installation wizard.

After it is successfully installed, the target directory will contain the following:

Sub-directory Contents

API API function of SenseLock EL.

Doc Product development manual and its description document.

Driver Hardware device driver. For the details about the installation of the driver, please refer to

2.2.1 that ―About Driver Installation‖ and Appendix E ‖Reference to Driver Installation‖.

IDE The support library required when Senselock offers integrated development environment

(such as Keil C51).

Senselock EL hardware system function library. For details, please refer to Chapter 8

―System Function Reference‖.

Samples Sample codes, including basic operational demos and cases‘ source code

Tools Various kinds of tool software. For the details about the usage of tool software, please refer

to Chapter 6 ―Direction for Tool Software Usage‖.

Support All kinds of supporting resources, such as cryptography algorithm library and diagnose

tool. For details, please refer to Appendix A ―Direction for cryptography algorithm usage‖.

2.2.1. Direction for Device Driver Installation

The device driver of Senselock EL will be installed automatically in the installation of SDK.

Under some circumstances, you might need to install the driver independently (if you use SDK

directly by copying it to other computer or release your software). In this case, you need to use the

driver installation tool available in SDK.

Located under the directory of %SDK%\Driver, this tool is called ―InstWiz3.exe‖. This is a

WIN32 EXF, which can accept the following command line parameters:

 /INSTALL install driver (this is a default option)

 /UNINSTALL uninstall the driver

 /NOGUI Installation interface not displayed

These command line parameters can be used in combination. For example, you can run

―InstWiz3.exe /uninstall /nogui‖ to uninstall the device driver in a hidden way.

This tool can also be used to check the installation status of the device driver of Senselock

ELin the current system: run InstWiz3.exe and the tool will check and report the installation
status of the driver automatically.

Senselock ELDeveloper Guide Product Installation

- 8 -

Note:

The InstWiz3.exe cannot be executed alone. Under the same directory, these files (mkSetup.dll,

language.dll) and directories (win98, winlh64, winlh86, winxp64, winxp86) must be consistently

unchanged remaining original file structure.

There are several ways to check whether the driver is successfully installed:

1. Insert Senselock EL device to check whether Senselock Senselock ELv2.x shows up

normally in the hardware device list (―Device Manager‖ ―Smart Card Reader‖). For

Windows98, Window2000 or above, if the device is inserted for the first time, the

system will give a prompt of ―new device found‖ automatically and complete the

installation;

2. Insert Senselock EL device and run the development test tool or user tool to check out

whether access to the device is successful;

If you are quite familiar with the installation process of the device driver, you can also choose

to install the Senselock EL device driver manually. The directory %SDK%\Driver\Obj contains all

the files and directions required for the manual installation of the driver.

If you want to complete the installation of the device driver on your own via API, please refer

to Appendix E ―API Reference for Device Driver Installation‖.

The device driver of Senselock EL has passed Microsoft‘s logo authentication (Designed for

Windows XP). For details, please visit http://testedproducts.windowsmarketplace.com/ and query

the product SenseIV.

2.3. Uninstall SDK

SDK can be uninstalled directly from ―Control Panel‖―Add／Delete Program‖. The device

driver of Senselock ELwill be deleted automatically while SDK is being deleted.

http://testedproducts.windowsmarketplace.com/

- 9 -

3. Preparation for Use

This chapter will use a sample to exemplify how to port part of the codes into SenseLock EL.

It will help you understand roughly the total process of Senselock EL software protection.
The full sample is available under the directory of %SDK%\samples\Developer

Manual\Chap3.

3.1. Demo Software

To make the process easier to understand, we have chosen a simple demo program:

bubble-sorting algorithm. Before it is ported, the code of the software is as follows:

#include <stdlib.h>

#include <stdio.h>

#include <conio.h>

/*bubble sort function*/

void bubble_sort(unsigned char *p, int len)

{

 int i,j;

 unsigned char tmp;

 for (i=0;i<len-1;i++)

 {

 for (j=0;j<len-i-1;j++)

 {

 if (p[j] < p[j+1])

 {

 tmp = p[j];

 p[j] = p[j+1];

 p[j+1] = tmp;

 }

 }

 }

}

/*main procedure*/

void main()

{

 unsigned char test[] = {4,3,8,2,9,7,1,5,0,6};

 int len = sizeof(test);

 int i;

 bubble_sort(test, len);

 printf("result:\n");

 for (i=0;i<len;i++)

 {

 printf("%d ",test[i]);

 }

}

Create a new Win32 Console Application in Microsoft Visual C﹢﹢6 and add the above

code to the VC6 project. In this sample, suppose we save the project as

C:\s4demo\Win32\demo1.dsp, and the above code as C:\s4demo\Win32\pc_demo1.c. Compile and

run the above code and it will output the following result:

result:

9 8 7 6 5 4 3 2 1 0

Senselock ELDeveloper Guide Preparation for Use

- 10 -

Let‘s suppose the sorting algorithm in the software is a code that shall be protected and that

shall be ported into ―SenseLock EL‖.

3.2. Code Porting

Before the code is ported, you need to choose a compiler supported by SenseLock EL. In this

sample, Keil C51 is selected. This chapter describes only necessary parts for the configuration of

the Keil C51 compiler. For more details about the usage of the compiler, please refer to Chapter 5

―Direction for Compiler Usage‖.

3.2.1. Create a Senselock EL Project

Run Keil μ Vision, select ―Project‖→ ―New Project…‖ on the menu, name the project as

―Demo1.uv 2‖, and save it on the hard disk. In this sample, suppose the project is saved as

―C:\s4demo\Demo1.uv2‖.

After that, μ Vision will prompt you to choose device. Select ―Intel‖→ ―8052AH‖ from the

list of ―Generic CPU Data Base‖. Keil will ask ―Copy Standard 8051 Startup Code to Project

Folder and Add File to Project?‖, select ―Yes‖.At this stage, a blank project is successfully

completed. Some additional configurations shall be made before the project can be supported by

―SenseLock EL‖.

Select ―project‖ → ―Options for Target1‖ from the menu. On the ―Target‖ page, set ―Memory

Model‖ as ―Large: variables in XDATA‖, and then switch to the ―Output‖ page, choose ―Create

Hex File‖.

3.2.2. Compile Senselock EL Codes

Now we can add the ported code to the project. Create a C file called demo1.c and copy the

bubble-sort () function in pc_demo1.c to demo1.c as well as adding the main () function of

SenseLock EL. The full contents of demo1.c are given below:

#include “ses_v3.h”

/*bubble sort function*/

void bubble_sort(unsigned char *p, int len)

{

 int i,j;

 unsigned char tmp;

 for (i=0;i<len-1;i++)

 {

 for (j=0;j<len-i-1;j++)

 {

 if (p[j] < p[j+1])

 {

 tmp = p[j];

 p[j] = p[j+1];

 p[j+1] = tmp;

 }

 }

 }

}

/*Senselock ELmain procedure*/

void main()

{

 unsigned char *test = pbInBuff;

 int len = bInLen;

 bubble_sort(test, len);

Senselock ELDeveloper Guide Preparation for Use

- 11 -

 _set_response(len,test);

 _exit();

}

The above compiled code can be run in SenseLock EL. We make a brief description of the

code before getting started with compilation.

The function of the code in this section is to submit the data and data length (byte count)

received at the PC end to the bubble_sort () function of Senselock ELfor processing and

return the processing results to PC.

The pbInBuff and bInLen are two pre-defined macros. The former points to

communication buffer, namely, the data sent by the PC while the latter indicates the length of

transmitted data.

The code of bubble-sort () function is completely identical with that in pc_demo1.c. This

is a very important feature of SenseLock EL: supporting the porting of standard C code.

_set_response () and _exit () are two system functions of the SenseLock EL. The

former is designed to transport data to PC while the latter returns from the application of

SenseLock EL. For the detailed description of the two system functions, please see Chapter 8

―System Function Reference‖.

For the sake of convenience, demo1.c is saved to the directory of C:\s4demo.

3.2.3. Compile and Test Senselock EL Codes

Before modifying the code (pc_demo1.c) at the PC end, you can compile and test the

Senselock EL code you have just compiled.

In the just-created project, choose the menu “Project” ―Components, Environment and
Books” and click “Add Files” in the dialog box to add demo1.c to the project. In the meantime,

you can add ―Ses51L.lib‖ offered by Senselock EL SDK to the project
5
.

Choose the menu ―Project‖―Build target‖ to compile codes. If the compilation is

successful, a file (demo1.hex) will be generated under the directory of C:\s4demo. This file is the

result of code compilation.

Now you can test or debug Senselock EL codes. For the details about testing and debugging

technique, please refer to Chapter 4 ―Developing Senselock ELCode‖ and Chapter 5 ―Direction

for Compiler Usage‖.

3.2.4. Download Codes to Senselock EL Hardware

Connect SenseLock EL2.3 to the computer and run the ―development test tool

(%SDK%\Tools\Devtest.exe) available in SDK. If the device driver is correctly installed, the tool

will display the global unique serial number for the connected device. Click ―Reconnect‖ to view

the detailed information about the hardware as shown in Figure 3-1.

5 It is recommended to copy ses51L.lib and ses_v3.h to the working directory, namely C:\s4demo in

this sample.

Senselock ELDeveloper Guide Preparation for Use

- 12 -

Figure 3-1 Senselock ELDevelopment Test Tool — Hardware Information Display

For the convenience of testing, we first re-initialize the device and click ―Recreate Root‖ to

create the file system in SenseLock EL. Suppose we download the compiled file demo1.hex to the

root directory. The file ID is 0xd001. Click ―Download‖ and fill in the file information

according to Figure 3-2.

Figure 3-2 Download File to Hardware

The software will calculate automatically the size of the file to be created. In this sample, the

file shall be at least 398 bytes. You can input a bigger value so that when the file grows bigger, the

created file can still be used. To write data to the existing file, simply choose the ―Overwrite

original file‖ box.

Senselock ELDeveloper Guide Preparation for Use

- 13 -

3.2.5. Modify PC Codes

Since bubble_sort() function is ported to SenseLock EL, we cancel or delete it in

pc_demo1.c. In the meantime, we change the called part of bubble_sort() in main()

function into the calling of codes in SenseLock EL. The contents of the modified pc_demo1.c are

as follows:

#include <stdlib.h>

#include <stdio.h>

#include <conio.h>

#include “sense4.h”

/*bubble sort function removed. Add Senselock ELinvoking code. */

void call_sense4(char *, unsigned char *, int);

/*main procedure*/

void main()

{

 unsigned char test[] = {4,3,8,2,9,7,1,5,0,6};

 int len = sizeof(test);

 int i;

 call_sense4(“d001”, test, len);

 printf("result:\n");

 for (i=0;i<len;i++)

 {

 printf("%d ",test[i]);

 }

}

void call_sense4(char *fid, unsigned char *buff, int len)

{

 /* See remarks for details.*/

}

The red, overstrike, big size text indicates the modification made to the original contents.

There are altogether three parts:

 Add support for access to Senselock EL hardware device, including header file

(sense4.h) and corresponding API function library (sense4.lib+sense4.dll or

sense4st.lib)

 Remove the copy of ported codes in the software and add the call function

call_sense4() to SenseLock EL.

 Add the calling of internal codes of Senselock EL to fulfill the function of ported

codes.

For the convenience of reading, the implementation process of the function

call_sense4()is omitted for the above codes. You can find the detailed information about the

function in the notes below. You can see that there is only one modification in the main()

function.

Notes: About call_sense4() function

In this sample, the function of call_sense4() is to run the EXF whose ID is 0xd001 in SenseLock

EL, taking test and len as input data and save the operation result to test. call_sense4() is

Senselock ELDeveloper Guide Preparation for Use

- 14 -

not a universal API function offered by SDK, but an encapsulation of standard API. The purpose of the

function is to enhance the readability of the sample codes.

In fact, to execute the EXF in SenseLock EL, the standard access process should be list devicesopen

specified devicechoose directoryauthenticate user PINexecute…executeclose the

devicerelease resources. We do not recommend you to access devices using this function in formal

software. For the details and suggested method for device access, please refer to Chapter 9 “API

Reference” and Chapter 4 ―Developing Senselock ELCodes‖.

The source codes of call_sense4() function:

void call_sense4(char *fid, unsigned char *buff, int len)

{

 SENSE4_CONTEXT ctx = {0};

 SENSE4_CONTEXT *pctx = NULL;

 unsigned long size = 0;

 unsigned long ret = 0;

 S4Enum(pctx, &size);

 if (size == 0)

 {

 printf("Senselock ELnot found!\n");

 return;

 }

 pctx = (SENSE4_CONTEXT *)malloc(size);

 if (pctx == NULL)

 {

 printf("Not enough memory!\n");

 return;

 }

 ret = S4Enum(pctx, &size);

 if (ret != S4_SUCCESS)

 {

 printf("Enumerate Senselock ELerror!\n");

 free(pctx);

 return;

 }

 memcpy(&ctx, pctx, sizeof(SENSE4_CONTEXT));

 free(pctx);

 pctx = NULL;

 ret = S4Open(&ctx);

 if (ret != S4_SUCCESS)

 {

 printf("Open Senselock ELfailed!\n");

 return;

 }

 ret = S4ChangeDir(&ctx, "\\");

 if (ret != S4_SUCCESS)

 {

 printf("No root directory found!\n");

 S4Close(&ctx);

 return;

 }

 ret = S4VerifyPin(&ctx, "12345678", 8, S4_USER_PIN);

 if (ret != S4_SUCCESS)

 {

 printf("Verify user PIN failed!\n");

 S4Close(&ctx);

 return;

 }

Senselock ELDeveloper Guide Preparation for Use

- 15 -

 ret = S4Execute(&ctx, fid, buff, len, buff, len, &size);

 if (ret != S4_SUCCESS)

 {

 printf("Execute Senselock ELexe failed!\n");

 S4Close(&ctx);

 return;

 }

 S4Close(&ctx);

 return;

}

Copy sense4.h and sense4st.lib in SDK to the directory of c:\s4demo\win32, add it to the

project and re-compile the VC6 project.

3.2.6. Test Protection Results

After taking the above steps, we have completed the protection of sample codes. Insert the

configured Senselock EL dongle to the computer, run the re-compiled sample software and you

will get the correct output result:

 result:

 9 8 7 6 5 4 3 2 1 0

Remove the Senselock EL dongle and re-run the sample software and you will get the prompt

for error.

 Senselock EL not found!

 result:

 4 3 8 2 9 7 1 5 0 6

3.3. Program Structure Analysis

Before the demo program is protected, the codes contain two major functions: main function

main() and function bubble_sort(). After it is protected, all the codes contain four major

functions: main function main(), device access function call_sense4(), main function

main() in SenseLock EL, and function bubble_sort() in SenseLock EL. Figure 3-1

illustrates their relationship.

SenseLock EL

main()

Unprotected

Version

bubble_sort()

exit
main()

Protected

Version

main()

call_sense4()

bubble_sort()

exit

Senselock ELDeveloper Guide Preparation for Use

- 16 -

Figure 3-1 Protection Structure of Demo Program

It can be seen that the protected codes seem to be based on the Client/Server structure.

Senselock ELis equivalent to a ―Service‖ while call_sense4() function and main()

function in Senselock ELplays the role of communication.

- 17 -

4. Develop Senselock EL Codes

You know from the previous chapter that developing Senselock ELapplications involves two

tasks: compiling internal codes of the dongle and compiling the software codes at the PC end so as

to access SenseLock EL. This chapter will guide you how to compile the internal codes of

SenseLock EL, test the codes and operate Senselock ELdevice via API.

4.1. Compile Internal Codes of SenseLock EL

Compiling the internal codes of Senselock ELrequires an understanding of the basics of C

language. If you have ever developed C programs on the PC, what is covered in this section will

be very easy to understand. The C language used for the development of Senselock ELis quite

simple, so it does not require an exclusive C programmer.

In the first chapter, we have mentioned there are two different executable files in SenseLock

EL: VM executable file and XA executable file, which correspond respectively to two kinds of

running modes: virtual machine mode and user mode (also known as VM mode and XA mode in

this text). The codes compiled by Keil C51 and Skit provided by us fall into the category of VM

files; the codes compiled by Raisonance Rkit fall into category of XA files. For the convenience of

description, we call both XA file and VM file internal executable files, abbreviated as EXF

(internal Executable File).

If different compiler/running modes are used, there is a slight difference in the requirements

for source codes. For details, please refer to Chapter 5 ―Direction for Compiler Usage‖. We will

try best to isolate the sample codes from running modes. Special description will be given for the

part in relation to the running modes.

4.1.1. Code Structure

The typical structure of Senselock ELinternal codes is as follows:

#include “ses_v3.h”

void foo()

{

 /* function code here. */

 return;

}

void main()

{

 /* initialization code here. */

 foo();

 _exit();

}

A code that is a standard C language program structure consists of a main function

main()and several sub-functions. The main function is the entry point of a program where the

codes start to be executed. The description of others is given below:

 #include “ses_v3.h”

ses_v3.h contains the definition of the extension service of Senselock ELsystem. You

must include this file in all codes. SES (System Extension Service, also called Senselock

ELsystem function in the text) offers common system functions, such as file operation,
clock operation, input & output, etc. All the system functions begin with the underline

―_‖. For detailed description of SES, please refer to Chapter 8 ―System Function

Senselock ELDeveloper Guide Develop Senselock ELCodes

- 18 -

Reference‖.

 Program Termination

You can add system function _exit()to any part of the program to terminate the

execution of the program. Notice that the use of return sentence in main function

cannot guarantee the safe exit of the program. Instead, the _exit() system function

shall be used. This differs slightly from standard C.

4.1.2. Input & Output

The purpose of writing internal codes for Senselock ELis to deliver functional service to the

software running on the computer so as to protect the software. The communication between them

is achieved via ―communication buffer‖, which is a special memory area in the hardware of

SenseLock EL. The data, sent from the computer to Senselock ELor from Senselock ELto the

computer, will all be saved in the communication buffer.

Two macros are defined in ses_v3.h of Senselock ELto receive the data from the

communication buffer. One is pbInBuff, which is a byte type pointer pointing to the

communication buffer; the other is bInLen, which is a single byte integer, indicating the length

of data sent over from the computer. Due to the limit of internal resources of SenseLock EL, the

communication buffer shall not exceed 250 bytes in size. In other words, the data sent from the

computer to Senselock ELor from Senselock ELto the computer each time shall not exceed 250

bytes
6
. To transmit data larger than 250 bytes requires that the data should be partitioned and

transmitted several times. For the implementation method, please refer to ―Memory Sharing‖ in

this chapter.

When it is necessary to transport data from Senselock ELto the computer, the system function

_set_response() shall be used. It will copy the data automatically to the communication

buffer where they can be received by the computer. It shall be noted that only the last call to

_set_response() is effective and the previous setting will be overwritten.

The sample as given below illustrates how data are transported between the computer and

SenseLock EL.

#include “ses_v3.h”

#include “string.h”

unsigned char output[256];

unsigned char input[256];

void main()

{

 int input_len = bInLen;

 int output_len = 0;

 memcpy(input, pbInBuff, input_len);

 /* Operate input data here… */

 /* If we get some output data… */

 _set_response((unsigned char)output_len, output);

 _exit();

}

In this sample, the C function memcpy(), which is defined in string.h is used. The

communication buffer itself is also a part of the memory, so you can either copy the contents of it

to somewhere else or operate it directly.

6In the current version, when data are transported from Senselock ELto the computer, the value can be as big as

252, but there is no guarantee of this value for the subsequent versions.

Senselock ELDeveloper Guide Develop Senselock ELCodes

- 19 -

4.1.3. Memory Structure

Senselock ELoffers more than 2K memory space
7
, but is still much less than that of PC. In

the middle of development, you need to use it cautiously in case overflow might occur.

The memory structure is a complex issue, which has close bearing to the selected compiler.

Due to the limited space of this text, it is impossible to talk about all the issues. If you feel it

somewhat hard to understand the memory structure of SenseLock EL, you can skip the following

details and refer directly to the end of this section ―Code Writing Suggestions‖.

1．Memory Allocation

In the VM mode, the memory is divided into two parts: internal and external RAM. The

internal RAM totals 256 bytes while the external RAM is up to 2K bytes. Some compilers might

use the internal RAM as stack in their compilation results, so under normal circumstances, try as

much as possible to use the external RAM in case the memory may overflow. In the codes, the

internal RAM and external RAM are identified respectively by keyword idata and xdata. For

example:

xdata unsigned long x;

idata unsigned long i;

The variable x is defined in the external RAM while the variable i is defined in the internal

RAM.

You do not need always to define variables explicitly using these two keywords. The

compiler can use the default value. For instance, if the compilation mode is set to Large (which is

recommended by us), all the variables without being given a special declaration will be defined in

the external RAM. In this case, to define variables in the internal RAM requires that the keyword

idata should be used explicitly.

The XA mode does not differentiate internal RAM from external RAM.

The communication buffer is a special memory. Under VM mode and XA mode, there is

difference in the memory address of the communication buffer.

The memory structure is shown in Figure 4-1:

0 …………………. 0xFF 0 …………………… 0x7FF 0x800 0x8001……….. 0x8FA

Internal RAM External RAM Data

length

Communication

buffer

 a. VM Mode

Memory Structure

0 ……………………………………………0x7FF invalid 0x1000 0x1001.............0x10FA

RAM Data

length

Communication

buffer

b. XA Mode Memory Structure

7 Under different running circumstances (different compilers are chosen), there are slight differences in available

memory. For specific values, please refer to Appendix B.

Senselock ELDeveloper Guide Develop Senselock ELCodes

- 20 -

Figure 4-1 Senselock ELMemory Structure

As for the issue of compilation mode setting, please refer to Chapter 5 ―Direction for

Compilation Usage‖.

2．Memory Sharing

For VM mode, unless Senselock ELis reset (for example, the device is unplugged or the

S4Control()function is used to send COTROL_RESET_DEVICE control code); otherwise

after Senselock ELEXF is executed, the system will not clear automatically the contents of

external RAM while the contents of internal RAM will be cleared each time. For XA mode, all

the memory will not be cleared automatically.

Using this feature, we can use the memory ―that is not cleared automatically‖ as ―shared

memory‖. This can help share data between different EXFs and can also use them to buffer data

among consecutive calls.

For instance, if a program in Senselock ELneeds to receive data larger than 250 bytes, it can

be done through a process similar to the following sample:

#include “ses_v3.h”

typedef struct {

 unsigned short offset;

 unsigned char len;

 unsigned char buff[1];

} IO_PACKAGE;

DEFINE_AT(unsigned char, big_buff[512], 0x400, RAM_EXT);

IO_PACKAGE *input = NULL;

void main()

{

 input = (IO_PACKAGE *)pbInBuff;

 LE16_TO_CC(&input->len);

 if (input->len != 0)

 {

 memcpy(big_buff + input->offset, input->buff, input->len);

 _exit();

 }

 /* now got enough data and you can add operations here… */

 _exit();

}

In the codes, we use two macros: DEFINE_AT and LE16_TO_CC. The former can define a

variable at the specified address of the specified memory area while the use of the latter will be

explained later in the topic of ―Big-Endian and Little-Endian‖, so you can temporarily think of it

as useless. In this sample, we have defined a 512-byte array of unsigned char at 0x400 of the

external memory.

Furthermore, we have also declared a structure where offset is designed to specify the

location where the data input this time are stored in the variable big_buff. len indicates the

length of the data input this time while buff saves the inputted data.

Suppose the 512-byte data shall be transported to Senselock ELbefore they are operated, the

Senselock ELDeveloper Guide Develop Senselock ELCodes

- 21 -

above codes can be executed four times. At each execution, the following offsets: 0, 128, 256,

384 and their corresponding 128-byte data are transmitted in respectively. At the fifth execution,

the variable len is set to 0, indicating no additional data can be transmitted in. At this point, the

codes have acquired sufficient 512-byte data and can continue to execute the required functions.

3．Code Memory

Although Code Memory does not belong to the general memory structure we mentioned

above, it can be operated (read only) in a similar way . Under some specific circumstances (for

example, one may need to put a big consulting table in SenseLock EL), the use of Code Memory

can provide great convenience.

The Code Memory can also be used to store some initial variables, such as strings, so as to

save the memory usage. For example, for the codes below:

code char message[1024] = “This should be a long message…”;

If the variable is stored at the code section, you can make read-only operation on the variable

just like operating general memory in SenseLock EL.

Attention: None of the ”system functions” can operate Code Memory, so to operate the variable defined
in Code Memory via “system function”, you must use functions like strcpy(), memcpy(), etc to copy them
to the general memory area.

4．Alignment issue

To transport data between the computer and Senselock ELby copying the structures requires

the attention for the alignment issue. In high-level languages, compiler will align the structures by

default in accordance with the machine instruction so as to enhance operation efficiency. For

example, if we use Visual C++ 6.0 to define the following structure:

struct {

 char c;

 long l;

} x;

The structure will take up 8-byte space. Whereas the same defined structure might take up

5-byte memory space in SenseLock EL. If data between the computer software and Senselock

ELare transported via same structure, there might arise chaos. In fact, there exists such a problem

in the sample of memory sharing mentioned above.

The solution requires that the structure defined in computer software should be aligned by 1

byte. For example, in Visual C++ 6.0
8
, we can add the compiler directive #pragma pack(push,

1) before the structure declaration to force the compiler to align it by 1 byte. After the declaration

is made, add #pragma pack(pop) to restore the original setting. For example,

#include “windows.h”

#pragma pack(push, 1)

typedef struct _MY_STRUCTURE {

 char c;

 long l;

} MY_STRUCTURE

#pragma pack(pop)

8 There are similar forcing methods in other high-level languages. For example, the packed key word can be used

in Delphi. If you do not want to change the setting of the compiler, you can also insert additional member variable

in the definition of the structure to achieve the goal of alignment. For example, in the definition of the structure x,

you can insert additional three bytes char padding[3] behind char c.

Senselock ELDeveloper Guide Develop Senselock ELCodes

- 22 -

For internal codes of SenseLock EL, if the Raisonance Rkit compiler is used, it is necessary

to do setup in the compilation option. For detail, please refer to Chapter 5 ―Direction for Compiler

Usage‖. The other two compilers do not need to be set.

5．Big-Endian and Little-Endian

This is an issue concerning the CPU architecture. Let us first explain briefly the meanings of

the two terms:

Big-Endian indicates ―high byte at the low address of the memory‖. In the computer of

Big-Endian, the high byte of the variable is in the front;

Little-Endian indicates ―low byte at the low address of the memory‖. In the computer of

Little-Endian, the low byte of the variable is in the front.

For example, to define the variable unsigned long x = 0x12345678, in the computer

of Big-Endian, the variable x in the memory shall be stored like this: 12 34 56 78 while in the

computer of Little-Endian, the way of storage is just the opposite: 78 56 34 12. An error will

occur if a value is assigned to the variable on the computers of different types by means of

memory copying.

The X86 serial computers are based on Little-Endian while Macintosh on Big-Endian. Keil

C51 uses Big-Endian while other two kinds of compilers use Little-Endian. The communication

buffer is a direct copy of the memory data, so this issue shall be taken into account.

Let‘s still take unsigned long x = 0x12345678 for example. Suppose the four bytes are

transmitted to the codes compiled by Keil C51 via the communication buffer. At this point, the

sequence of the bytes in the communication buffer is 78 56 34 12. If using the following code to

assign y, the result of y will be 0x78563412, which obviously falls out of our expectation.

…

unsigned long y;

memcpy(&y, pbInBuff, sizeof(unsigned long));

…

The solution to this is to convert the byte sequence. When the data transported via the

communication buffer contain multi-byte variables, such as short, long, float and other types,

conversion must be done. The conversion can either be conducted in the computer software or in

Senselock ELEXF. To achieve better code compatibility, it is recommended to conduct conversion

in Senselock ELEXF.

Some pre-defined macros can assist in the conversion of byte sequence. These macros can

determine automatically whether there is a need for conversion depending on the compiler type

without the necessity of your considering what compiler to use. For example, LE16_TO_CC can

convert 16 bit variable from Little-Endian into the byte sequence used in SenseLock EL. Other

macros accomplish the similar functions. Abbreviation BE indicates Big-Endian while CC

indicates Senselock ELcompiler (C Compiler).

Attention: As the double-precision floating point is not the standard data type supported by the compiler,
but a structure (DOUBLE_T) self-defined by Senselock, this data type has no bearing to the compiler.
No matter what compiler is used, DOUBLE_T is always of Little-Endian.

4.1.4. Use System Function Library Files

This section does not discuss the details of system functions. Rather, it examines how to use

the library files of the system function in the compilation of Senselock ELcodes.

If the Keil C51 compiler is used, there are library files in three modes available: ses51c.lib,

Senselock ELDeveloper Guide Develop Senselock ELCodes

- 23 -

ses51s.lib and ses51l.lib, which correspond respectively to Compact Model, Small Model and

Large Model in compilation mode. We do not recommend the two modes other than Large Model.

To compile the codes, please copy the corresponding library files to the directory where the

project is located and add them to the project.

It is somewhat simpler to use Raisonance Rkit. There is only one library file ses.lib, so

simply copying it to the project will do the job. However, it shall be noted that Rkit has a

requirement for the sequence in which files are added. ses.lib must be the last file added to the

project.

4.1.5. Data Type

The description of part of data types supported by Senselock ELis given below:

Type char int short long float double

Length (byte) 1 2 2 4 4 8

4.1.6. Code Compilation Proposal

Given below are some general proposals for compiling Senselock ELinternal codes:

1． Try as much as possible to use global variables to avoid stack overflow error as a result of too

many local variables, especially arrays and structures;

2． Try not to use such variables as arrays, structures, etc. that might occupy a large amount of

memory directly when passing parameters. Instead, pointers shall be used to avoid possible stack

overflow;

3． There should not be too many levels of function nesting so as to avoid possible stack overflow;

4． Under the VM mode, try as much as possible to use external memory to avoid memory overflow

or stack insufficiency;

5． Consider the issue of alignment to avoid data communication errors;

6． Consider the issue of Big-Endian and Little-Endian to avoid data communication errors;

7． Try as much as possible to use the system function to enhance efficiency. For example,

_mem_copy() is higher than memcpy() in efficiency;

8． Use English comments as some compilers do not support Chinese currently(i.e. RKit);

9． Try as much as possible not to operate strings with functions like sprintf(), sscanf(), etc.

to avoid possible stack overflow;

4.2. Access Senselock ELDevice

In the software, the Senselock ELdevice is accessed via API offered by us. There are two

levels of access: developer level and user level. Both of them can get their corresponding access

authorization using their respective PIN. This section will exemplify the general process of

accessing the Senselock ELdevice in the software.

All the samples in this section are developed and tested in Visual C++ 6.0.

4.2.1. General Access

General access refers to access that does not require security authorization, which involves

Senselock ELDeveloper Guide Develop Senselock ELCodes

- 24 -

Listing/searching and connecting device, switching directory, sending control code, closing device,

etc. Please refer to the sample below:

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include "sense4.h"

int main(int argc, char** argv)

{

 SENSE4_CONTEXT s4ctx = {0}; /* current device context */

 SENSE4_CONTEXT *ps4ctx = NULL; /* for device context list */

 unsigned long ctx_size = 0; /* size of device context list */

 unsigned long ret = 0; /* return value */

 unsigned long len = 0; /* for returned data length. */

 /*step 1: Enumerate all the Senselock ELdevices connected. */

 ret = S4Enum(NULL, &ctx_size);

 if (ret != S4_SUCCESS && ret != S4_INSUFICIENT_BUFFER)

 {

 printf("Enumerate Senselock ELfailed!<error code = %08x>\n", ret);

 return 1;

 }

 if (ctx_size == 0)

 {

 printf("No Senselock ELfound!\n");

 return 1;

 }

 ps4ctx = (SENSE4_CONTEXT *)malloc(ctx_size);

 ret = S4Enum(ps4ctx, &ctx_size);

 if (ret != S4_SUCCESS) /* Some error occured. */

 {

 printf("Enumerate Senselock ELfailed!<error code = %08x>\n", ret);

 free(ps4ctx);

 ps4ctx = NULL;

 return 1;

 }

 /* step 2: Open one of the device. For example, the first one. */

 memcpy(&s4ctx, ps4ctx, sizeof(SENSE4_CONTEXT));

 /* Here we can get device's Global Serial Number via s4ctx.bID. */

 free(ps4ctx); /* Or free it later if you want to access other devices.*/

 ps4ctx = NULL;

 ret = S4Open(&s4ctx);

 if (ret != S4_SUCCESS)

 {

 printf("Open first Senselock EL failed!<error code = %08x>\n", ret);

 return 1;

 }

 /* step 3: Now we can send some control code to device,

 for example, control the LED. This step is not necessary. */

 ret = S4Control(&s4ctx, S4_LED_UP, NULL, 0, NULL, 0, &len);

 if (ret != S4_SUCCESS)

 {

 printf("Light LED failed!<error code = %08x>\n", ret);

 S4Close(&s4ctx);

 return 1;

 }

 /* step 4: We may change the current directory here. */

 ret = S4ChangeDir(&s4ctx, "\\"); /* Change to root dir. */

 if (ret != S4_SUCCESS)

 {

Senselock ELDeveloper Guide Develop Senselock ELCodes

- 25 -

 printf("Change to root dir failed!<error code = %08x>\n", ret);

 S4Close(&s4ctx);

 return 1;

 }

 /* step 5: Do some more actions here... */

 /* step 6: Close device. */

 S4Close(&s4ctx);

 return 0;

}

This sample program describes the general process of accessing Senselock EL in 6 steps:

1． List/search

Senselock EL

devices

It is necessary to call S4Enum() function twice in all. At the first time, set

the first parameter to NULL and the value of the second parameter to 0.

After the first call, the function will list all the Senselock EL devices in

the system and the desired sizes of device context (the amount of the

devices can be calculated this way:
ctx_size/sizeof(SENSE4_CONTEXT).

Allocate dynamically the desired memory so as to save the context list of

all the devices listed(or allocate a block of sufficiently large static

memory), call the S4Enum() function again and it will copy the context of

all the devices to the list.

The context of each device contains the serial number9 of the device.

Under the situation where there are several devices, you can differentiate

devices with serial numbers.

2． Open specified

device

The device can be opened by passing in the context pointer of the specified

device as a parameter to S4Open() function.

3． Send control code After opening the device, you can control the device by sending the control

codes, such as modifying LED status, modifying communication mode,

getting hardware serial number, etc.

4． Change current

directory

When you access the device for the first time, the current directory is the

root directory. To change the current directory to sub-directory requires the

calling of S4ChangeDir() function or the calling of this function to

switch from sub-directory to root directory.

5． Other operation

types

Other security level related accesses such as PIN authentication, file

writing, program calling, etc.

6． Close device After all accesses are completed, close Senselock EL devices.

4.2.2. Developer level Access

Generally speaking, developer level access can be made via the tool software we have offered.

If you hope to manage your own device or to improve code test efficiency, you can complete

operations via developer level API function.

Developer level access involves creating directory (root directory and sub-directory), deleting

(clearing) directory, creating a file, overwriting a file and modifying developer level PIN.

9 Senselock EL offers a global unique hardware serial number, but if a user-defined ATR file is created under the

root directory, the serial number in the context will be the user-defined serial number. In this case, the real

hardware serial number can be only acquired via S4Control(). For the details of ―User Defined Serial

Number‖, please refer to the description of S4CreateDir() function.

Senselock ELDeveloper Guide Develop Senselock ELCodes

- 26 -

To ease code interpretation, we first encapsulate the device connection part of sample code in

4.2.1 into a function: OpenSense4(), which opens the device of specified index and returns

the context of the device. The source codes are as follows:

unsigned long OpenSense4(SENSE4_CONTEXT *ctx, int index)

{

 SENSE4_CONTEXT *ps4ctx = NULL;

 unsigned long ctx_size = 0;

 unsigned long ret = 0;

 If (ctx == NULL)

 {

 return S4_INVALID_PARAMETER;

 }

 /* Enumerate all the Senselock ELdevices connected. */

 ret = S4Enum(NULL, &ctx_size);

 if (ret != S4_SUCCESS && ret != S4_INSUFFICIENT_BUFFER)

 {

 return ret;

 }

 if (ctx_size == 0)

 {

 return S4_KEY_REMOVED;

 }

 ps4ctx = (SENSE4_CONTEXT *)malloc(ctx_size);

 ret = S4Enum(ps4ctx, &ctx_size);

 if (ret != S4_SUCCESS) // Some error occured.

 {

 free(ps4ctx);

 ps4ctx = NULL;

 return ret;

 }

 if (index > (int)(ctx_size/sizeof(SENSE4_CONTEXT) - 1))

 {

 return S4_KEY_REMOVED;

 }

 memcpy(ctx, ps4ctx+index, sizeof(SENSE4_CONTEXT));

 free(ps4ctx);

 ps4ctx = NULL;

 ret = S4Open(ctx);

 return ret;

}

The sample codes given below demonstrate how to re-initialize a Senselock EL device, create

and write an executable file and a data file, modify the developer level PIN of Senselock EL root

directory. This is also a general process of initializing Senselock EL device.

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include "sense4.h"

#include "psense4.h"

int main(int argc, char **argv)

{

 SENSE4_CONTEXT s4ctx = {0};

 unsigned char fid_exe[] = "d001"; // exe file ID

 unsigned long exe_size = 2048; // create file size

 unsigned char fid_dat[] = "d002"; // data file ID

 unsigned long dat_size = 1024; // create file size

Senselock ELDeveloper Guide Develop Senselock ELCodes

- 27 -

 char exe_path[] = "c:\\s4demo\\demo1.hex"; // exf file path in disk

 char dat_path[] = "c:\\s4demo\\data1.dat"; // data file path in disk

 unsigned char default_dev_pin[] = "123456781234567812345678";

 unsigned char old_dev_pin[] = "123456781234567812345678";

 unsigned char new_dev_pin[] = "876543218765432187654321";

 unsigned long len = 0;

 unsigned ret = 0;

 /* Open first Senselock ELif exists. */

 ret = OpenSense4(&s4ctx, 0);

 if (ret != S4_SUCCESS)

 {

 printf("Open Senselock ELfailed! <error code = 0x%08x>\n", ret);

 return 1;

 }

 /* Check whether a root dir exists. */

 ret = S4ChangeDir(&s4ctx, "\\");

 if (ret != S4_FILE_NOT_FOUND && ret != S4_SUCCESS)

 {

 printf("Change to root dir failed! <error code = 0x%08x>\n", ret);

 S4Close(&s4ctx);

 return 1;

 }

 /* If a root dir exists. */

 if (ret != S4_FILE_NOT_FOUND)

 {

 /* Verify developer PIN to get full access privilege. */

 ret = S4VerifyPin(&s4ctx, old_dev_pin, 24, S4_DEV_PIN);

 if (ret != S4_SUCCESS)

 {

 printf("Verify dev PIN failed! <error code = 0x%08x>\n", ret);

 S4Close(&s4ctx);

 return 1;

 }

 /* Delete old root dir. */

 ret = S4EraseDir(&s4ctx, NULL);

 if (ret != S4_SUCCESS)

 {

 printf("Delete root dir failed! <error code = 0x%08x>\n", ret);

 S4Close(&s4ctx);

 return 1;

 }

 }

 /* Create new root dir. */

 ret = S4CreateDir(&s4ctx, "\\", 0, S4_CREATE_ROOT_DIR);

 if (ret != S4_SUCCESS)

 {

 printf("Create new root failed! <error code = 0x%08x>\n", ret);

 S4Close(&s4ctx);

 return 1;

 }

 /* Verify developer PIN to get full access privilege. */

 ret = S4VerifyPin(&s4ctx, default_dev_pin, 24, S4_DEV_PIN);

 if (ret != S4_SUCCESS)

 {

 printf("Verify dev PIN failed! <error code = 0x%08x>\n", ret);

 S4Close(&s4ctx);

 return 1;

 }

 /* Write disk file to SenseLock EL. */

 ret = PS4WriteFile(&s4ctx,

 fid_exe, exe_path, &exe_size,

Senselock ELDeveloper Guide Develop Senselock ELCodes

- 28 -

 S4_CREATE_NEW, S4_HEX_FILE,

 &len);

 if (ret != S4_SUCCESS)

 {

 printf("Write exe file failed! <error code = 0x%08x>\n", ret);

 S4Close(&s4ctx);

 return 1;

 }

 ret = PS4WriteFile(&s4ctx,

 fid_dat, dat_path, &dat_size,

 S4_CREATE_NEW, S4_DATA_FILE,

 &len);

 if (ret != S4_SUCCESS)

 {

 printf("Write data file failed! <error code = 0x%08x>\n", ret);

 S4Close(&s4ctx);

 return 1;

 }

 /* Change developer PIN. */

 ret = S4ChangePin(&s4ctx,

 default_dev_pin, 24,

 new_dev_pin, 24,

 S4_DEV_PIN);

 if (ret != S4_SUCCESS)

 {

 printf("Change dev PIN failed! <error code = 0x%08x>\n", ret);

 S4Close(&s4ctx);

 return 1;

 }

 /* Close SenseLock EL. */

 S4Close(&s4ctx);

 /* everything done! */

 printf("Congratulations!\n");

 return 0;

}

The process of developer level access is relatively simple. The basic process is like this: open

deviceswitch directoryauthenticate developer PINdeveloper level operationclose device.

As the codes of developer level access might contain the ―plain text‖ of developer PIN, make sure

to keep confidentiality of the developer level access codes.

For the detailed description of API involved in the codes, please refer to Chapter 9 ―API

Reference‖.

Important reminder: Under whatever condition, do not include developer level access codes in the
software to be released. Please change the developer level PIN into a secret value before the dongle is
released.

4.2.3. User Level Access

Except for the basic operations, there is actually only one access in user level: executing

internal EXF.

In the sample codes as given below, we continue to use the OpenSense4() function as

mentioned above.

#include <stdio.h>

#include <stdlib.h>

#include <conio.h>

#include "sense4.h"

Senselock ELDeveloper Guide Develop Senselock ELCodes

- 29 -

#include "psense4.h"

int main(int argc, char **argv)

{

 SENSE4_CONTEXT s4ctx = {0};

 unsigned char fid_exe[] = "d001"; // exe file ID

 unsigned char user_pin[] = "12345678";

 unsigned long len = 0;

 unsigned ret = 0;

 unsigned char input[256] = {0};

 unsigned long input_len = 128;

 unsigned char output[256] = {0};

 unsigned long output_len = 251;

 /* Open first Senselock ELif exists. */

 ret = OpenSense4(&s4ctx, 0);

 if (ret != S4_SUCCESS)

 {

 printf("Open Senselock ELfailed! <error code = 0x%08x>\n", ret);

 return 1;

 }

 /* Change to root dir if exists. */

 ret = S4ChangeDir(&s4ctx, "\\");

 if (ret != S4_FILE_NOT_FOUND && ret != S4_SUCCESS)

 {

 printf("Change to root dir failed! <error code = 0x%08x>\n", ret);

 S4Close(&s4ctx);

 return 1;

 }

 /* Verify user PIN to get invoking privilege. */

 ret = S4VerifyPin(&s4ctx, user_pin, 8, S4_USER_PIN);

 if (ret != S4_SUCCESS)

 {

 printf("Verify user PIN failed! <error code = 0x%08x>\n", ret);

 S4Close(&s4ctx);

 return 1;

 }

 /* Invoke exf 0xd001. */

 ret = S4Execute(&s4ctx, “d001”,

 input, input_len, output, output_len, &len);

 if (ret != S4_SUCCESS)

 {

 printf("Invoke 0xd001 failed! <error code = 0x%08x>\n", ret);

 S4Close(&s4ctx);

 return 1;

 }

 /* Close SenseLock EL. */

 S4Close(&s4ctx);

 /* everything done! */

 printf("Congratulations!\n");

 return 0;

}

If you hope to use XA running mode, it is necessary to use the newer function

S4ExecuteEx(). If you hope the software accesses the dongle in an exclusive mode, please

replace S4Open() with the S4OpenEx() function. For details, see Chapter 9 ―API Reference‖.

Important reminder: In actual application, try mixing or encrypting communication data so as to get

Senselock ELDeveloper Guide Develop Senselock ELCodes

- 30 -

higher randomness to thwart malicious decryption analysis.

4.3. About Code Test

From the perspective of Senselock EL internal codes, you can conduct tests in two ways: one

is hardware level test, namely, downloading compiled codes directly to Senselock EL device and

then calling and checking running results; the other is software emulation test. With the simulator

we have offered, code test can be made. The advantage of the latter is that it can also trace and

debug codes in addition to tests. The disadvantage is that some extra configuration is required.

From the perspective of device call, you can conduct tests in two ways: one is to use the tool

software ―development test tool‖ offered by Senselock; the other is to write high-level language

testing codes .

Which testing method to choose depends on your own habits. The process of software

emulation test has bearing to the compiler. For detailed usage, see Chapter 5 ―Direction for

Compiler Usage‖. For tool software, see Chapter 6 ―Direction for Tool Software Usage‖.

- 31 -

5. Direction for Compiler Usage

There are now three kinds of compiler software available for the development of Senselock

ELEXFs. This chapter will give a description of the usage and precautions for these compilers. If

you hope to understand the usage of compiler software in a more visual way, please refer to

―Multimedia Teaching System‖ in the SDK CD.

For the installation method of Keil and Rainsonance compiler, please refer to relevant

instruction documents of them.

Senselock EL2.3 supports two running modes: VM and XA. The VM251 mode supported by

the version before 2.2 is already replaced by the XA mode. To achieve a fast understanding of the

three kinds of compiler, please refer to Table 5-1 first.

Table 5-1 Features of Compiler Software

 Sense Skit Keil C51 Rkit

Code mode VM XA

Code bit 8 bits 16 bits

Byte sequence LE BE LE

Code optimization

efficiency

middle high High

Memory structure Internal RAM+external RAM No distinction between

internal and external

Other descriptions Free software, full

functions, but relatively

low in efficiency

Commercial software.

Special attention shall be

given to the issue of byte

sequence.

Commercial software.

We have not yet

offered the debugging

simulator at this stage.

LE: Little-Endian BE: Big-Endian

As standard C programming is used, whatever compilation software is used, it will only have

some impact on development habits, but no much on the codes themselves. By using the macros

defined in ses_v3.h effectively, you can compose compiler-independent codes.

Attention: The compilation result of the compiler is HEX file, which is in text format, so it cannot be run
directly in SenseLock EL. It must be converted into binary codes. The Hexbin tool available in SDK can
be used in the middle of conversion. For details, please refer to Section 5.4 ”Executable File Format”.

5.1. Direction for Keil C51 Usage

Keil C51 is a suite of excellent compilation software developed by Keil. The IDE of the

software is called µVision. You can download the beta version from the official website of Keil:

http://www.keil.com. For limitation in the beta version, please refer to the instruction on the

website.

This section gives a necessary description of Keil C51 usage. To achieve a better

understanding of Keil C51 compilation software, you are recommended to refer to the help

document of the software.

All the three kinds of compilation software introduced in this chapter manage codes by

―project‖. For Keil C51, a typical project usually includes project file *.uv2, several C code files

(including header files), Senselock EL system function header file ses_v3.h and Senselock

ELsystem function library file ses51?.lib
10

.

If you use dongle 2.2 or below and hope to use float algorithm, you must overwrite the six

10 ‗?‘ indicates S, C or L, corresponding to three compilation modes: Small, Compact and Large.

http://www.keil.com/

Senselock ELDeveloper Guide Direction for Compiler Usage

- 32 -

files under the directory of %Keil%\C51\Lib with the six files with identical names under the

directory of %SDK%\IDE\Keil\FloatLib11; otherwise an error will occur in the float calculation.

To be on the safe side, it is recommended to back up the six files before overwriting them.

To make it easy to configure the Keil compilation environment, a patch installation program

(KeilPatch.exe in the directory of %SDK%\IDE\KEIL）is available in SDK. This patch can be

used to fulfill automatically such functions as library file copying, debugger setup, etc. For

details, please refer to the instruction file in the patch directory.

5.1.1. Project Creation and Management

The process of creating a project goes like this (there might be some differences in operation

processes if µVision of a different version is used. In this text, we will take µVision 3 for

example）:

1． Start the software, choose the menu ―Project‖―New Project…‖ and save the project

file to the disk;

2． Choose ―Intel‖―8052AH‖ from the ―Data Base‖ list box of the ―Select Device for

Target ‗Target1‘‖ dialog box. For the existing items, you can click ―Select Device for
Target „Target1‟‖ from the ―Project‖ menu, open ―Select Device for Target „Target1‟‖

dialog box and choose ―Intel‖－>―8052AH‖CPU from the ―Data Base‖ list box as

shown in Figure 5-1.

Figure 5-1 CPU Type Selection

If the patch installation program is already used to configure the Keil development

environment, there might be slight differences in the above operation steps. You will first

be prompted to choose the device database file as shown in Figure 5-2:

11 %SDK% indicates the installation path for Senselock ELSDK. %Keil% indicates the installation path for Keil

C51. %RIDE% indicates the installation path for Rkit. Similarly hereinafter.

Senselock ELDeveloper Guide Direction for Compiler Usage

- 33 -

Figure 5-2 Select a Device Database File

Choose Senselock Devices and there will show up a dialog box of ―Select Device for
Target „Target1‟‖. The ―Description‖ field displays some basic information of the

hardware and prompts you to choose Memory Model in ―Large‖ mode as shown in

Figure 5-3:

Figure 5-3 Choose Device Type

 From here, choose ―Senselock‖―Senselock ELV2.3.2‖

3． Set project options. Click the menu ―Project‖―Options for Target ‟Target 1‟‖, and

choose ―Memory Model‖ as ―Large‖ in the ―Target‖ page as shown in Figure 5-4;

Figure 5-4 Project Option Configuration

4． Continue to set project option. In the ―Output‖ page, choose the checkbox ―Create HEX

Senselock ELDeveloper Guide Direction for Compiler Usage

- 34 -

File‖ and only this way, the target file in hex format can be generated in project

compilation. Close the project option dialog box;

5． Make sure ses_v3.h is already copied to the current project directory or to the directory

of ―%keil%\C51\INC”; otherwise there will occur an error of failure to find the header

file ses_v3.h in the middle of program compilation. Ses_v3.h is located under the

directory of "%SDK%\IDE\KEIL\INC;

6． Depending on which ―Memory Model‖ is selected in step 3, add the corresponding SES

library file to the project. For example, if ―Memory Model‖ is chosen as Large, add

ses51L.lib to the project. This file is located in the directory of

―%SDK%\IDE\KEIL\LIB”. Choose the menu ―Project‖―Components, Environment,
Books…‖ to add the file to the project;

7． Add the C source codes written by yourself to the project;

After the project is successfully created, you can modify the options of the project at any

time.

5.1.2. Code Compilation and Debugging Configuration

There is nothing special in the middle of compilation. Simply press F7 key or choose the

concerned menu to get started with compilation. If the compilation is successful, a HEX file will

be generated accordingly in the project directory; otherwise the compiler will give a prompt for

error.

You can trace and debug codes using the software simulator offered by Senselock in Keil C51.

To use the simulator, you must modify the configuration of the compiler software. You can use the

patch installation tool in the directory of %SDK%\IDE\KEIL to complete configuration

automatically or do it manually in this way:

1. Copy S4Simulator.dll and vfsView.exe shipped with SDK in the directory

of %SDK%\IDE\KEIL\bin\ to the directory of %KEIL%\c51\bin;

2. Open the configuration file %KEIL%\Tools.ini and add the following to the [C51]

section of the file: TDRV0=BIN\S4Simulator.dll("Senselock ELSimulator"). If TDRV0

is already used, use the next available number TDRV1, and so on , as shown in Figure

5-5.

Senselock ELDeveloper Guide Direction for Compiler Usage

- 35 -

Figure 5-5 Keil C51 Simulator Configuration

Start Keil µVision to open the debugging project, choose ―Use Senselock ELSimulator‖ on

the right of the ―Debug‖ page in project option, and configure debug options according to Figure

5-6:

Figure 5-6 Debug Option Configuration

Close the project option dialog box. Now you can debug the codes in the project.

5.1.3. Code Debugging Method

The way Keil enters the debug status is to choose the menu ‖Debug‖ ―Start/Stop Debug

Session‖ or click the icon on the tool bar. If the Senselock ELsoftware simulator is properly

Senselock ELDeveloper Guide Direction for Compiler Usage

- 36 -

installed and configured, when Keil enters the debugging status, there will be the following data

input window:

Figure 5-7 Data Input Window

There are two parts of data input window. The upper half manages the Senselock

ELsimulation file system while the lower half sets the data to be transported to Senselock

ELcommunication buffer.

Senselock ELsimulator simulates Senselock ELfile system using the file stored in the current

project directory called ―vFileSys.dat‖. Click the ―New‖ button in the data input window to create

a new simulation file system. It is not necessary to create a simulation file system for Senselock

ELapplications that do not call the file system service.

Click the ―Modify‖ button in the data input window to modify the simulation file system.

Figure 5-8 Simulation File System Tool Interface

Senselock ELDeveloper Guide Direction for Compiler Usage

- 37 -

In the simulation file system, the file system takes the directory whose ID is ―3F00‖ (namely,

MF of SenseLock EL) as a root node and display the information by a tree structure. Designed

only for code debugging, the simulation file system supports only one-level directory structure. No

sub-directory can be created.

Choose ―New File‖ from the right-button menu of the directory node to create a new file in

the current directory.

Figure 5-9 ―Create a New File‖ Window

The simulation file system supports four types of files: executable files (EXF), data files

(DAT), RSA public key files and private key files. For the public key file type, the file shall not be

less than 136 bytes while for the private key file type, the file shall not be less than 330 bytes. The

internal readable/writable files shall be marked with ―R/W‖ attributes.

Double click or choose ―Edit‖ from the right-button menu of any file node to edit its contents

as shown in Figure 5-10.

Figure 5-10 Edit File Contents

You can modify the hexadecimal data directly when editing a file or choose to import data

from a disk file or save the data to a disk file.

Sometimes executable files need to operate themselves. For example, the internal function

_create() can be designed to acquire the information of the current executable file. As the

current executable file is not saved to the simulation file system in a real sense, but only debugged

in the Keil compilation environment, this kind of operation will fail. The solution is to mark an

executable file as ―default file‖ in the simulation file system (set this by right clicking the file

node). In this way, when the executable file needs to operate itself, it will operate the ―default file‖

as the current executable file.

Like the real hardware device, the software simulator simulates the communication buffer so

Senselock ELDeveloper Guide Direction for Compiler Usage

- 38 -

as to exchange data with the outside. The data in the input data edit field will be copied to the

communication buffer inside the software simulator for use by Senselock ELprograms. The data

edit field allows for the input of hexadecimal data or formatted data. Right click an address to

choose to input different data on the menu as shown in Figure 5-11.

Figure 5-11 Data Input Demo

After setting the file system and the data to be transported to SenseLock EL, click the ―OK‖

button in the dialog box to enter the Keil debug status. In the debug status, the process of code

debugging is more or less the same as other IDE, so no more description will be given here.

Should you have any doubt, please refer to the instruction manual of Keil or visit

http://www.keil.com for help.

If there shows up a dialog box for Senselock ELexecution error in the middle of debugging,

in addition to viewing error codes, you might also check the Regs window on the left of

Workspace area:

Figure 5-12 Register Window

The Regs window displays the current CPU register list: R0~R7 are universal registers and

R0~R1 are also indirect addressing registers of internal memory (IRAM); dptr is the indirect

http://www.keil.com/

Senselock ELDeveloper Guide Direction for Compiler Usage

- 39 -

addressing register of external memory (XRAM); sp is the stack pointer; PC is the program pointer.

The most likely errors include dptr out of range (the normal value is between 0x0000~0x08ff), SP

overflow (the normal value is between 0x07~0xff, moving upward) or PC out of range (exceeding

the valid code range).

The way of exiting from the debugging status is the same as that of entering debugging status.

Choose menu ―Debug‖―Start/Stop Debug Session‖ or click icon on the tool bar to exit the

debugging status.

If the Senselock ELprogram exits the debugging status by executing the _exit() system

function, there will show up a dialog box for execution result, which is the data returned from

Senselock ELas shown in Figure 5-13.

Figure 5-13 Execution Result Dialog Box

The execution result dialog box displays the output data contents set for the last time by the

_set_response() system function. It has the same meaning as the data returned by calling

the actual hardware.

5.2. Direction for Raisonance Rkit Usage

Rkit is a compiler software offered by Raisonance. Unlike Keil C51, the beta version Rkit

offered by Raisonance cannot be used in SenseLock EL, so you need to purchase the official

version of the software.

The objective codes compiled by Rkit can only be run in Senselock EL2.3. If you wish to be

compatible with earlier Senselock ELhardware version, it is recommended to choose Keil C51 or

Skit to compile your code.

5.2.1. Project Creation and Management

A typical Rkit project includes project file *.prj, several C code files (including header files),

Senselock ELsystem function header file ses_v3.h and Senselock ELsystem function library file

ses.lib. It is more complex to create a Rkit project than in Keil C51.

1. Start the software, select the menu ―Project‖―New‖, choose Type as XA and set the

location for project saving and its name, as shown in Figure 5-14:

Senselock ELDeveloper Guide Direction for Compiler Usage

- 40 -

Figure 5-14 Naming Project

2. In the dialog box of ―Core Selection‖ that follows, choose ―Addressing mode‖ as

―Non Page 0‖ and ―Core‖ as ―SmartXA2‖ as shown in Figure 5-15:

Figure 5-15 Core Selection

3. Configure project options. Choose the menu ―Options‖―Project‖ and make the

following configuration:

a) Spread the RCXA tree and configure the compilation options. Choose the

―Floating Point‖ node and ―IEEE: standard‖ option as shown in Figure 5-16:

Senselock ELDeveloper Guide Direction for Compiler Usage

- 41 -

Figure 5-16 Compilation Option Configuration — Floating Point

b) Select the ―Code generation‖ node and choose the option ―Do not insert extra
bytes in structures for alignment‖ to address the issue of byte alignment;

c) Select the ―Memory Model‖ node and choose the options ―Large‖ and

―Functions in user mode‖;

d) Spread the RLXA tree and configure Linker options. Select the ―Linker‖ node,

choose ―SmartXA Client APP‖ from the ―Startup Mode‖ field, and set ―User stack
size‖ as desired size. It is recommended to set it to 512 bytes

12
 as shown in Figure

5-17. However, if VM and multi-XA programs need to share the memory, then set

―Intialized DATA size‖ as 0.

12 User Stack, namely user stack management, is rather complicated. The parameters and local variables of any

function will seize user stack. On one hand, we suggest saving stack as much as possible, such as reducing the use

of local variables, avoiding passing in parameters that occupy a large amount of memory in function call; on the

other hand, the size of user stack shall be relatively sufficient, because the compiler cannot check whether the stack

overflows. It shall be noted that the stack space divided in Rkit can not be used as user memory. In other words, if

512 bytes are allocated for user stack, the available memory of users will decrease by 512 bytes.

Senselock ELDeveloper Guide Direction for Compiler Usage

- 42 -

Figure 5-17 Linker Option Configuration

e) Choose OK to save project configuration;

4. Make sure ses_v3.h is already copied to the current project directory or to the directory

of ―%RIDE%\ INC”. Or else there will occur an error of failure to find the header file

ses_v3.h in the middle of compilation. Ses_v3.h is located under the directory of

―%SDK%\IDE\RKIT\INC”;

5. Add the C source codes written by yourself to the project. Choose the menu

―Project‖―Add node Source/Application‖ to add the specified file to the project;

6. Add the SES library file ses.lib into the project. This file is located under the directory

of ―%SDK%\IDE\RKIT\LIB”;

It shall be noted that Rkit requires ses.lib to be located at the bottom most position of the

project list; or else linker error will occur. Right click the file (such as ses.lib) to be moved and

choose ―Mode node‖―Up‖ or ―Down‖ on the popup menu to move. The correct file list shall

be similar to that in Figure 5-18.

Figure 5-18 Project File List Demo

5.2.2. Code Compilation and Debugging

Choose the menu ―Project‖―Build all‖ to compile and link the project. If compilation is

successful, a HEX file will be generated accordingly in the project directory.

Up till now, we have not yet offered simulated debugging environment in the Rkit compiler.

Senselock ELDeveloper Guide Direction for Compiler Usage

- 43 -

To trace and debug the codes, it is recommended to debug codes in Skit or Keil before compiling

them with Rkit in the end.

5.3. Senselock Skit

Skit will be described independently in another manual. For details, please contact Senselock.

5.4. Executable File Format

Whatever compiler is used, the compilation result is a HEX file in text format. To execute it

in Senselock EL requires that it should first be converted into binary format, abbreviated as BIN

file.

For the convenience of conversion, SDK offers tool software: hexbin.exe. The usage of this

software is like this:

hexbin.exe [file.hex] [file.bin] i 1

The API and development testing tool of the current version can process HEX files directly.

For example, when the S4WriteFile() function is used to write the EXF into SenseLock EL,

you can input directly the HEX file and specify the file type as S4_HEX_FILE (VM executable

file) or S4_XA_HEX_FILE (XA executable file). In this case, API will conduct automatically

the conversion from HEX format to BIN format.

- 44 -

6. Direction for Tool Software
Usage

To make it easy to test Senselock EL hardware and develop application

programs, %SDK%\Tools directory offers some common tool software as shown in Table 6-1.

Table 6-1 Tool Software Introduction

Tool software

name

Purpose File name Hardware

vision

Development test

tool

Senselock ELapplication program test

tool carries out developer level

management and user level call of

Senselock ELdevice.

DevTest.exe Standalone

(above and

v2.0)

Network
(above v2.0.5)

User test tool Conducts basic tests on hardware

devices, designed to get device basic

information and check whether the

device is running normally.

UserTest.exe Standalone

(above and
v2.0)

Network
(above v2.0.5)

Network version

servise program

For Senselock ELnetwork version‘s

service program, please refer to

Chapter 7 ―Direction for Network

Version Usage‖.

e4nsrv.exe Network

(above v2.0.5)

Network version

service

management

program

For Senselock ELnetwork version‘s

service management program, please

refer to Chapter 7 ―Direction for

Network Version Usage‖.

e4nmgr.exe Network

(above v2.0.5)

Network version

test tool

Test tool designed for Senselock

ELnetwork version‘s service program.

NetUserTest.exe Network
(above v2.0.5)

The device being initialized by the current version development tools can be operated by

previous development tools, and vice versa. If you are using EL v3.0, it is not allowed to

initialize by tools in v2.3.2 development kit.

6.1. Development Test Tool

The development test tool is the most common tool software whose basic functions include:

 Device connection. Connect and disconnect the device and view device information.

 Directory management. Create directory, delete (root directory) and clear

(sub-directory).

 PIN management. Modify and check developer PIN, user PIN.

 File management. Create and download files. For RSA key files, it can generate RSA

public and private key pair using the hardware device directly

 Call test. Test to call the executable files downloaded to Senselock ELhardware.

 Cryptography algorithm. The software can generates RSA key pair and execute

cryptography algorithm.

Senselock ELDeveloper Guide Direction for Tool Software Usage

- 45 -

6.1.1. Device Reconnection

When the tool software is started, it will search automatically the Senselock ELdevices

connected in the system. If no device is found, the software will give a warning. Click

―Reconnect‖ to further display hardware information as shown in Figure 6-1:

Figure 6-1 Display Device Information

The tool software opens the dongle in ―shared mode‖, so in the middle of device connection,

other software can still access SenseLock EL. Click ―Disconnect‖ to close the connection of the

tool software with the dongle.

6.1.2. Device Reset

The most fundamental directory management involving creating or deleting the root directory.

In the software, choose ―Recreate Root‖ to perform root-directory-related operations: create root

directory, delete root directory, delete root directory and create new root directory (by default).

As for the device shown in Figure 6-1, no root directory is not yet created in the hardware.

After reset, new root directory will be created.

When creating root directory, it is required to input the device ID as in Figure 6-2:

For network version, setting module anthorization mode is essential, Figure 6-3:

For the device where the root directory already exists, when you click the button ―Recreate

Root‖ to recreate it , it is necessary to input the developer level PIN for the original root directory;

otherwise there is no way to achieve this. If you wish to delete the root directory directly, you need

to choose the box ―Do not recreate after erase root dir‖.

After the directory is created (deleted, recreated or cleared), the developer level PIN and user

PIN of the directory will be restored to its default value. For the detailed description of default

PIN value and security, please refer to 1.3.1 ―PIN‖ and 7.1.2 ―Network Local PIN‖.

Attention:
1. Only one level of sub-directory is supported in the development test tool. To use two levels of
sub-directory, you need to write programs yourself.
2. For the network version, after the sub-directory is cleared, its authorization count will be restored to a

Senselock ELDeveloper Guide Direction for Tool Software Usage

- 46 -

default value, namely, 10. For the detailed information of authorization count, please refer to Chapter 7
“Direction for Network Version Usage”.

Figure 6-2 Clear Sub-directory Contents

6.1.3. PIN Management

PIN (also known as password) is the foundation for Senselock ELfile system security. For the

detailed description of the PIN code, please refer to 1.3.1 ―PIN‖ and 7.1.2 ―Network Dongle

PIN‖.

On the ―PIN management‖ of the development test tool, you can modify the developer‘s PIN

and user‘s PIN of Senselock EL. The interface for PIN modification is as shown in Figure 6-4.

Figure 6-4 PIN Code Management

Input the directory whose PIN code needs to be modified, choose PIN modification type and

input old PIN and new PIN according to the prompt on the interface before clicking the ―Modify

DEV PIN‖ or ―Modify User PIN‖ (The button will display different texts according to the

Senselock ELDeveloper Guide Direction for Tool Software Usage

- 47 -

selected PIN type) button to modify the corresponding PIN.

For network dongle, PIN of root directory is only available.

6.1.4. Download Files

The function of ―Download‖ is to download disk files to the hardware. The current

downloadable file types include executable files, data files and RSA key files. When the

executable file is downloaded, it is required that the disk file should be in INTEL HEX format or

binary format. The format required for the downloading of RSA files is S4_RSA_PUBLIC_KEY

or S4_RSA_PRIVATE_KEY, which differs from the actual storage format in the hardware. The

tool will conduct conversion automatically. For detailed information, please refer to Chapter 9

about the description of S4WriteFile() function.

When the downloading format is INTEL HEX, the downloading tool will convert the HEX

file automatically into BIN file and save it in the current directory.

The ―Download ‖ page is shown in Figure 6-5:

Figure 6-4 Download Files

When files are downloaded, it is necessary to choose the type of files to be downloaded and

then click the ―...‖ button to choose the corresponding disk files. After the disk files are selected,

the contents of the ―File size‖ input box will be automatically updated to the actual storage space

required by the hardware. To create a new file, you can also input a larger value so that the file can

be used repeatedly. After that, fill in the downloading directory and file name (the directory name

and file name shall be a 2-byte hexadecimal number. For example, the file name in Figure 6-4 is

EF01) and finally click the ―Download‖ button to download the file to the hardware.

When the file type is set as executable file, you can choose the attribute of

―Readable-Writable for other EXF‖. For the readable and writable attributes of the executable file,

please refer to the description of the S4WriteFile() function.

When a file already exists, you can choose ―Replace existent file‖ to update the file contents.

The size of the file to be downloaded shall not exceed that of the file to be overwritten.

If the child directory does not exist when downloading files, a hint will remind you to build

one.

Senselock ELDeveloper Guide Direction for Tool Software Usage

- 48 -

For network dongle, downloading file is only available from root directory.

6.1.5. Clear Directory Content

For network dongle, this feature is not applicable.

For standalone dongle, input the directory ID and developer PIN of directory to empty the

directory and reinitiate default PIN as Figure 6-6.

6.1.6. Execute File

For network dongle, this feature is not applicable. Execution file in network dongle requires

EL Network Test Tool.

The function of ―Execute‖ is to execute a exe file stored in Senselock EL as shown in Figure

6-5;

Figure 6-7 Executable File

When executing a file, User PIN is required. For the convenience of testing, ―12345678‖ is

preset value. And ―Executable File ID‖ must be filled by full path name, for instance, ―\000a‖. The

―Parameter‖ must be hexadecimal value. Click

Click the ―Execute‖ button and the tool will execute the specified executable file in the

hardware and return execution result as shown in Figure 6-8:

Senselock ELDeveloper Guide Direction for Tool Software Usage

- 49 -

Figure 6-8 Execution Result

6.1.7. Autherization Management
For standalone dongle, this feature is not applicable.

In the tab, it is editable on network dongle overall autherrization, module autherisation

information and mode, as shown in Figure 6-9.

6.1.8. PC Keys

The ―PC keys‖ function is designed to generate RSA key pair files in

S4_RSA_PUBLIC_KEY and S4_RSA_PRIVATE_KEY format on the local computer and

download them to the hardware or for other purposes. Choose the directory where the files are to

be saved, fill in the ―public key file name‖ and ―private key file name‖ and then click the

―Generate‖ button to generate specified key pairs by software as shown in Figure 6-10;

Figure 6-10 PC Key

- 50 -

7. Direction for Network Version
Usage

The network version can allow several software applications to access concurrently the same

dongle connected to the server, namely, to share the dongle. By limiting the amount of software

running concurrently at the client end, the purpose of controlling software use can be achieved.

Unlike the desktop version, the network version needs not only to protect the software from illegal

copying but also to limit strictly the amount of concurrently running software.

This chapter introduces Senselock ELnetwork version.

7.1. Introducing Senselock ELNetwork Version

7.1.1. Features

Compared with other network version dongles, the biggest benefit of Senselock ELnetwork

version is that it guarantees, to the highest extent, authorization security on top of affording

software protection with the same strength as desktop version SenseLock EL.

1. Software Protection Capability

In terms of software protection technology, there is no difference between Senselock

ELnetwork version and the desktop version. You can accomplish the development of

software protection on the desktop version and apply it directly on the network version

Senselock ELlater on. The only job that needs to be done is to re-compile your software.

With SenseLock EL, you do not need to worry that the risk of piracy might increase

when the software is switched from the desktop version to the network version; whereas this

is a grave defect of other network version dongles.

2. Authorization Control Capability

Senselock ELnetwork ―ports‖ innovatively the authorization management module to the

hardware. In the previous network dongles, the authorization number (the number of clients

that can make concurrent access) is ultimately determined by the ―network service program‖

running on the server. The modification of the network service program might render the

authorization number control invalid. Senselock ELnetwork version is totally different: all

the authorization control is done in the hardware. The network service program of it is

responsible only for communication between the client and Senselock ELhardware, so there

is no way to attack authorization number.

Network dongle has two types of authorization: Overall and Module Authorization. The program

inside the dongle gains a module authorization before being executed. The module is the minimum

authorization unit with an ID (0x0000-0x00ff) and a value (0x0000-0x00ff). Overall authorization

stands for the total authorisable number regardless modules; the default value is 0; the max value

is 255. It implys that no matter how many modules being set or what value being set, in process of

using network dongle, the total authorized number must not exceed the Overall Authorization.

There are two authorization modes: 1 Process Mode. Obtaining a module‘s authorization means

occupying an authorization of the module. 2. IP Mode. From the same IP address, obtaining any

authorization of the same module means that sharing and occupying an authorization only.

Senselock ELDeveloper Guide SES Reference

- 51 -

7.1.2. Network Dongle PIN

Like the desktop version of SenseLock EL, the network version dongle also contains the

developer level PIN, which is fully identical with that of Senselock ELdesktop version,

maintaining each directory independently and offering local developer level access to the

hardware device. For details, please refer to 1.3.2 ―PIN‖.

In terms of User PIN, there are some differences between the network version and the

standalone version. For the network dongle, the root directory is available to use only, therefore,

only root directory has Developer PIN and User PIN.

7.1.3. Network Dongle Module

The module of network dongle is defined logical unit by developers. Each one has to be set

with authorized information.

Note:

In old versions, that a module is a child to first level directory.

A network dongle can contain 16 modules in maximum. Each module ID ranges from

0x0000-0xffff; each module‘s authorization value ranges from 0x0000-0x00ff.

7.2. Using Network Version SenseLock EL

7.2.1. Installation and uninstallation of Network Dongle Service
Program

The Network Dongle Service Program e4nsrv.exe is executable under Windows in the mode

of service, managing ports, remote services and logging on daily basis for administration.

While installing SDK, e4nsrv.exe will be installed as well automatically. It is checkable by

opening Computer Management to find a service named Elite4 Net Service.

If the serice does not appear in the service list, you could manually install by command

e4nsrv –i. And the unstallation command is e4nsrv –u. Other options will be listed by typing

e4nsrv -?.

Please refer to 7.2.2 to find out how to setup parameters.

7.2.2. Use of Network Dongle Service Management Tool

The service management tool, e4nmgr.exe is appled to set working parameters, to start/stop

program, to display the working status, and to manage authorization upon client-side, as shown in

Figure 7-1.

1. Parameter Setup

The e4nmgr.exe is applied to set up the working paramenters on network dongle. Click

button Sepup or menu Management -> Set Parameter, if the tool is running at the server

of hosting services, as shown in Figure 7-2.

If the tool is not running at the host server, it is only available to modify the item

Management Tool Network Settings.

Senselock ELDeveloper Guide SES Reference

- 52 -

Figure 7-2 displays, the tool allows to setup Management Tool Network and Server Side

Network with dongle itself.

In the Dongle Parameter Setting, if the device ID is input, the relavant parameters will

be displayed including overdue, black-white list, as Figure 7-3.

Developers could modify the default User PIN by using the interface. After the

completion of set-up, Click OK to save the info to the config file e4nsrv.ini under the

directory preserving service as shown in Figure 7-4.

2. Add Host

After setting up the paramenter, it is ready to add the host. Click File-> Add Host, as the

Service Management Tool working with Service on the same machine, IP must be set as

127.0.0.1, as Figure 7-5.

3. Start/Stop Services

If the Service Management Tool is running on the same manchine with service, it is

available to operate on service status by clicking Management->Start/Stop Services or

hit shortcut botton on the tool bar, as in Figure 7-6. Otherwise, there is no way to make

the same operation.

4. Connect Device

After the service starts, it is operational on connecting device for obtaining the info of

the dongle and its modules. Click File->Connect or directly hit the shortcut button on

tool bar. Once the connection is successfully built, the tool will display the required info

on dongles and its modules as Figure 7-7.

5. Apply / Release Authorisation (Kick Peer)

As the servise starts and connects to device successfully (the info of dongle and its

modules are displayed correctly), if any peer connects and applys for authorization, the

tool will update automatically: display user‘s IP, applied modules, total authorization of

the module, occupied authentication of the module, total authorization of device,

occupied authorization of device, as Figure 7-8.

If it is necceory to release the authorization by force on some chosen peer, Right Click->

Senselock ELDeveloper Guide SES Reference

- 53 -

Release Authorization, or hit the shortcut botton on tool bar as Figure 7-9.

7.2.3. Use of Network Dongle API

The network dongle API is used on accessing Elite EL network version remotely. Despite from

S4Enum, S4Open and so on, other APIs were reserved to be compatible downwards, please refer

to Chpater 9. Please set the client-side config e4ncli.ini correctly while using network dongle API,

as Figure 7-10.

HOSTADDR item is IP address of server. If this item is empty, the client side will broadcase in

mode of message to search for services by default; otherwise, the client side will do by assigned IP

address.

DEVELOPERID is the itme of Developer ID, client-side must set this correctly to find the device.

The full sample is placed under the directory %SDK%/samples/api/net device.

Senselock ELDeveloper Guide SES Reference

- 54 -

8. SES Reference

SES(System Extension Service) is a group of functions supported by Senselock ELhardware.

All the SES functions are declared in the header file:ses_v3.h. This header file also defines a group

of macros together with some auxiliary functions to simplify the developing process. According to

the different purpose, SES and macros can be divided to the following categories:

Attention: Some SES functions require specific hardware version. For more detail, please

refer to the ―Requirements‖ section of each SES‘s reference.

Table 8-1 SES and MACRO

Category Comments

Flow Control Please refer to 8.1

Input/Output Please refer to 8.2

File Operation
Used to operate internal file of SenseLock EL, i.e. data file. For more

detail, please refer to 8.3

Mathematics

Support simple/double precision float calculation. Provide all the

common mathematic functions defined in math.h of standard C

language. For more detail, please refer to 8.4

Cryptographic

Algorithm
Provide SHA1、RSA、DES/TDES Cryptographic algorithms. For more

detail, please refer to 8.5

Memory Operation
Basic memory operation support. I.e.: dynamic memory allocation,

memory copy etc. For more detail, please refer to 8.6

Time
Timer and real time clock functions. For more detail, please refer to

8.7

Macro and Auxiliary

function

For more detail, please refer to 8.8

Get Device Info
I.e. function used to get the GUID of the device. For more detail,

please refer to 8.9

Senselock ELDeveloper Guide SES Reference

- 55 -

8.1. Flow Control

1). _exit
Exit Senselock ELEXF

void _exit(void)

Parameters:

 None

Return Values:

 None

Remarks:

Must use this function to terminate Senselock ELhardware program(EXF) and

invoking this function anywhere will result in the termination of the EXF.

Requirements:

 Hardware version :Senselock EL2.x

Example Code:

 please refer to the sample code of _set_response()

Senselock ELDeveloper Guide SES Reference

- 56 -

8.2. Input/Output

2). _set_response
Set the data to be transmitted back to PC by Senselock ELEXF.

BYTE _set_response(

 BYTE bLen,

 BYTE* pbBuff);

Parameters:

 bLen [in] Length of returned data.
 pbBuff [in] Buffer address.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

The length of returned data cannot exceed that of the communication buffer.Namely,

250 bytes for desktop version and 244 for network version.

Requirements:

 Hardware version :Senselock EL2.x

Example Code:

#include “ses_v3.h”

char buff[32] = “This is a test buffer.”;

void main()

{

 _set_response(sizeof(buff), (BYTE *)buff);

 _exit();

}

Senselock ELDeveloper Guide SES Reference

- 57 -

8.3. File Operation

This group of functions is used to operate the internal file system of Senselock ELdevice.

3). _open
Select and open the file specified.

BYTE _open(

 WORD wFid,

 HANDLE* pHandle);

Parameters:

 wFid [in] File ID.
 pHandle [out] Handle to the file opened.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

Senselock ELinternal program(EXF) can open up to 3 files concurrently. If you want

to operate more files, unwanted file handles must be closed using _close().

You must check the Return value to see whether or not the file-open operation

succeeds!

Requirements:

 Hardware version :Senselock EL2.x

Example Code:

 please refer to the sample code of _write().

Senselock ELDeveloper Guide SES Reference

- 58 -

4). _close
Close the file specified.

BYTE _close(HANDLE handle);

Parameters:

 handle [in] Handle to the file to be closed

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

 please refer to the sample code of _write().

Senselock ELDeveloper Guide SES Reference

- 59 -

5). _read
Read data from a opened file. Reading privilege must be satisfied according to the file

security attributes. For more detail, please refer to the ―Remarks‖ section of this table.

BYTE _read(

 HANDLE handle,

 WORD wOffset,

 BYTE bLength,

 BYTE* pbBuff);

Parameters:

 handle [in] Handle to the file opened.
 wOffset [in] Reading offset
 bLength [in] Length of the data to be read,1~247bytes.
 pbBuff [out] Pointer to data buffer, used to store the data read.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

To read the content of the specified file, reading privilege MUST be satisfied

according to the file security attributes:

· Data file, Public key file can be read by EXFs of the same directory freely.

· If the security attribute of an EXF has been set to ―unreadable/unwrittable‖,then it

can not be read by other EXFs. Otherwise, it can be read by another EXF of the

same type if they also reside in the same directory.(Same type means that a VM

EXF can only be read by another VM EXF,and a XA EXF can only be read by

another XA EXF).It‘s highly recommended that you set the security attribute of

all the EXFs to be ―UNREADABLE/UNWRITTABLE‖to enhance security

unless any of them may be used for remote update purpose)

· Private key file can NEVER be read.

Requirements:

 Hardware version :Senselock EL2.x

Example Code:

 please refer to the sample code of _write().

Senselock ELDeveloper Guide SES Reference

- 60 -

6). _write
Write data to a file already opened, writing privilege must be satisfied according to the

file security attributes. For more detail, please refer to the ―Remarks‖ section of this

table.

BYTE _write(

 HANDLE handle,

 WORD wOffset,

 BYTE bLength,

 BYTE* pbBuff);

Parameters:

 handle [in] Handle to the file opened.
 wOffset [in] Writing offset
 bLength [in] Length of the data to be written,1~247bytes.
 pbBuff [in] Pointer to the data buffer, used to store data to be written in.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

To write data to the specified file, writing privilege MUST be satisfied according to

the file security attributes:

· Data file, Public key file can be written by EXFs of the same directory freely.

· If the security attribute of an EXF has been set to ―unreadable/unwrittable‖, then

it can not be written by other EXFs. Otherwise,it can be written by another EXF

of the same type if they also reside in the same directory.(Same type means that a

VM EXF can only be written by another VM EXF,and a XA EXF can only be

written by another XA EXF).It‘s highly recommended that you set the security

attribute of all the EXFs to be ―UNREADABLE/UNWRITTABLE‖to enhance

security unless any of them may be used for remote update purpose)

· Private key file can be written by EXFs of the same directory.

Requirements:

 Hardware version :Senselock EL2.x

Example Code:

/* This demonstrates how to operate file in SenseLock EL. */

#include “ses_v3.h”

unsigned char buff[128];

void main()

{

 HANDLE hFile1;

 HANDLE hFile2;

 BYTE ret = 0;

 /* Open data file 0xa001. */

 ret = _open(0xa001, &hFile1);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

Senselock ELDeveloper Guide SES Reference

- 61 -

 /* Read 128 bytes from file 0xa001. */

 ret = _read(hFile1, 0, 128,buff);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 /* Open data file 0xa002. */

 ret = _open(0xa002, &hFile2);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 /* Write what we read to file 0xa002. */

 ret = _write(hFile2, 0, 128, buff);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 /* Close both files. */

 _close(hFile1);

 _close(hFile2);

 /* ret=0 indicates an successful operation.

 You can also send what we read to PC via

 _set_response(). */

 _set_response(1, &ret);

 /* Exit program. */

 _exit();

}

Senselock ELDeveloper Guide SES Reference

- 62 -

7). _create
Create a new file and inherit the security attributes from it‘s parent file. For more detail,

please refer to the ―Remarks‖ section of this table.

BYTE _create(

 WORD wFid,

 WORD wSize,

 BYTE bFileType,

 BYTE bFlag,

 HANDLE * pHandle);

Parameters:

 wFid [in] ID of the file to be created.
 wSize [in] Size of the file.
 bFileType [in] File type,possible values:

· SES_FILE_TYPE_EXE Executable（EXF）

· SES_FILE_TYPE_EXE_DATA Data file

· SES_FILE_TYPE_RSA_PUB RSA Public file

· SES_FILE_TYPE_RSA_SEC RSA Private file
 bFlag [in] Flag,possible values:

· CREATE_OPEN_ALWAYS

Open the file if it already exists, create a new file otherwise.

· CREATE_FILE_NEW

 Create and open the file, return error if it already exists.

· CREATE_OPEN_EXISTING

 Open an existing file. Similar to SES _open().
 pHandle [out] Handle to the file if it‘s opened successfully.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

Because this SES is designed specifically for remote operations, files created by it

can only be accessed internally in SenseLock EL. In other words, one can‘t write a

file created by this SES by using S4WriteFile() and PS4WriteFile() even if he has

developer level PIN.

File created by this SES will inherit security attributes of its parent file(SES

caller).So if one want to create a usable new file, the parent file(SES caller)must

have its security attribute set to be ―READABLE/WRITTABLE‖. Otherwise, a

useless ―dead file‖ will be created.(Senselock has admitted that‘s a design flaw, and

it will be modified in the coming new version).

Executable(EXF)created by this SES must be enabled using SES _enable_exe()

before it can be executed. EXF created by VM EXF is a VM EXF, EXF created by

XA EXF is a XA EXF.

Caution: There is no data imported by executing this function. _write() is required to

write data in the assigned file.

Requirements:

 Hardware version:Senselock EL2.3

Example Code:

Senselock ELDeveloper Guide SES Reference

- 63 -

please refer to the sample code of _enable_exe().

Senselock ELDeveloper Guide SES Reference

- 64 -

8). _enable_exe
Enable EXFs created by SES _create().

BYTE _enable_exe(WORD wFid);

Parameters:

 wFid [in] ID of the EXF to be enabled.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 Effective only to EXFs created by SES _create().

Requirements:

 Hardware version:Senselock EL2.3

Example Code:

/* This demonstrates how to create a new exe file and enable

it in SenseLock EL. */

#include “ses_v3.h”

void main()

{

 BYTE ret = 0;

 HANDLE hFile;

 /* Create a new exe file with file ID 0xa003. */

 ret = _create(0xa003, 1024, SES_FILE_TYPE_EXE,

 CREATE_FILE_NEW, &hFile);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 /* SHOULD set file content here….*/

 /* Enable the newly created file. */

 ret = _enable_exe(0xa003);

 _set_response(1, &ret);

 _exit();

}

Senselock ELDeveloper Guide SES Reference

- 65 -

8.4. Mathematics

This category includes all the commonly used mathematic functions and is the biggest group

among SES.

If you want only single precision calculation result, SES functions are not absolutely

necessary. You can just #include math.h and use functions defined in it. But, to VM EXF, using

single precision float SES functions can boost calculation speed greatly. For XA EXF, those

functions are provided just for compatibility purpose and will not effect calculation speed.

By contrary, double precision float calculation MUST use SES to accomplish due to the fact

that the compiler can‘t support effective double type (keyword ―double‖ maybe handled as ―float‖,

depending on the compiler setting). Double precision float in Senselock ELis represented using a

struct(defined as DOUBLE_T) and thus you can‘t assign a value to it simply by using ―=‖. There

are three common ways to assign a double precision float: first one is by means of memory copy,

i.e. get the byte array representation of the source in memory before assignment and then copy

this array to destination DOUBLE_T; second, using SES to convert different format among single

precision, integer, and double precision; third, using the auxiliary function which can convert a

string to a double precision float.

About struct DOUBLE_T,the following problems should be paid attention to:

 This struct takes 8 bytes totally, and it has the same format as the double precision float

real*8 stipulated in IEEE.

 DOUBLE_T uses Little-Endian,which is compiler-independent.

Single and double precision float SES functions have similar naming scheme, all the single

precision functions have the suffix of ‗f‘.

9). _addf
Single precision float adding.

float _addf(

 float x,

 float y);

Parameters:

 X [in] augends.
 Y [in] addend.

Return Values:

 Sum of two single precision float.

Remarks:

 None

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

 After running,the result of sum will be 4.9 .

 float sum, a = 3.2, b = 1.7;

 sum = _addf(a, b);

Senselock ELDeveloper Guide SES Reference

- 66 -

10). _add
Double precision float adding.

BYTE _add(

 DOUBLE_T *presult,

 DOUBLE_T *px,

 DOUBLE_T *py);

Parameters:

 presult [out] Pointer to the result.
 Px [in] Pointer to the augends.
 Py [in] Pointer to the addend.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Example Code:

 DOUBLE_T sum, a, b;

 BYTE ret = 0;

 /* assign value to a and b here… */

 ret = _add(&sum, &a, &b);

Senselock ELDeveloper Guide SES Reference

- 67 -

11). _subf
Single precision float subtraction.

Float _subf(

 float x,

 float y);

Parameters:

 X [in] minuend.
 Y [in] subtrahend.

Return Values:

 Subtraction of two single precision floats.

Remarks:

 None

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 68 -

12). _sub
Double precision float subtraction.

BYTE _sub(

 DOUBLE_T *presult,

 DOUBLE_T *px,

 DOUBLE_T *py);

Parameters:

 presult [out] Pointer to the result.
 Px [in] Pointer to the minuend.
 Py [in] Pointer to the subtrahend.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 69 -

13). _multf
Single precision float multiplication.

float _subf(

 float x,

 float y);

Parameters:

 X [in] Multiplicand.
 Y [in] Multiplier.

Return Values:

 Product of two single precision float.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 70 -

14). _mult
Double precision float multiplication.

BYTE _mult(

 DOUBLE_T *presult,

 DOUBLE_T *px,

 DOUBLE_T *py);

Parameters:

 Presult [out] Pointer to the result.
 Px [in] Pointer to the multiplicand.
 Py [in] Pointer to the multiplier.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 71 -

15). _divf
Single precision float division .

float _divf(

 float x,

 float y);

Parameters:

 X [in] dividend.
 Y [in] divisor.

Return Values:

 Quotient of two single precision float.

Remarks:

None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 72 -

16). _div
Double precision float division.

BYTE _div(

 DOUBLE_T *presult,

 DOUBLE_T *px,

 DOUBLE_T *py);

Parameters:

 Presult [out] Pointer to the result.
 Px [in] Pointer to the dividend.
 Py [in] Pointer to the divisor.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 73 -

17). _sinf
Sine of a single precision float.

float _sinf(float x);

Parameters:

 X [in] Radian..

Return Values:

 Sin of the radian.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 74 -

18). _sin
Sine of a double precision float.

BYTE _sin(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 Presult [out] Pointer to the result.
 Px [in] Pointer to the radian.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 75 -

19). _cosf
Cosine of a single precision float.

float _cosf(float x);

Parameters:

 X [in] Radian.

Return Values:

 Cosine of the radian.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 76 -

20). _cos
Cosine of a double precision float.

BYTE _cos(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 Px [in] Pointer to the radian.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 77 -

21). _tanf
Tangent of a single precision float.

float _tanf(float x);

Parameters:

 X [in] Radian.

Return Values:

 Tangent of the radian.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 78 -

22). _tan
Tangent of a double precision float.

BYTE _tan(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 Px [in] Pointer to the radian.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 79 -

23). _asinf
Asin of a single precision float.

float _asinf(float x);

Parameters:

 X [in] Sine value.

Return Values:

 Asin of the float.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 80 -

24). _asin
Asin of a double precision float.

BYTE _asin(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 Px [in] Pointer to the sine value.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 81 -

25). _acosf
Acos of a single precision float.

float _acosf(float x);

Parameters:

 X [in] Cosine value.

Return Values:

 Acos of the float.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 82 -

26). _acos
Acos of a double precision float.

BYTE _acos(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 Px [in] Pointer to the cosine value.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 83 -

27). _atanf
Atangent of a single precision float.

float _atanf(float x);

Parameters:

 X [in] Tangent value.

Return Values:

 Atangent of the float.

Remarks:

None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 84 -

28). _atan
Atangent of a double precision float.

BYTE _atan(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 Px [in] Pointer to the tangent value.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 85 -

29). _atan2f
Atangent of two single precision float‘s quotient.

float _atan2f(

 float x,

 float y);

Parameters:

 X [in] dividend.
 Y [in] divisor.

Return Values:

 Atangent of two float’s quotient.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 86 -

30). _atan2
Atangent of two double precision float.

BYTE _atan2(

 DOUBLE_T *presult,

 DOUBLE_T *px,

 DOUTLE_T *py);

Parameters:

 presult [out] Pointer to the result.
 Px [in] Pointer to the dividend.
 Py [in] Pointer to the divisor.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 87 -

31). _sinhf
Sinh of a single precision float.

float _sinhf(float x);

Parameters:

 X [in] Radian.

Return Values:

 Sinh of the float.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 88 -

32). _sinh
Sinh of a double precision float.

BYTE _sinh(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 Px [in] Pointer to the radian.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 89 -

33). _coshf
Cosh of a single precision float.

float _coshf(float x);

Parameters:

 X [in] Radian.

Return Values:

 Cosh of the float.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 90 -

34). _cosh
Cosh of a double precision float.

BYTE _cosh(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 Px [in] Pointer to the radian.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 91 -

35). _tanhf
Tanh of a single precision float.

float _tanhf(float x);

Parameters:

 X [in] Radian.

Return Values:

 Tanh of the float.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 92 -

36). _tanh
Tanh of a double precision float.

BYTE _tanh(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 Px [in] Pointer to the radian.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 93 -

37). _ceilf
Calculates the ceiling of a single precision float.

float _ceilf(float x);

Parameters:

 X [in] Floating-point value.

Return Values:

 This function returns a float value representing the smallest integer that is

greater than or equal to x.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 94 -

38). _ceil
Calculates the ceiling of a single precision float.

BYTE _ceil(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 Px [in] Pointer to the float parameter

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 95 -

39). _floorf
Calculates the floor of a single precision float.

float _floorf(float x);

Parameters:

 x [in] Float parameter.

Return Values:

 This function returns a floating-point value representing the largest integer

that is less than or equal to x.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 96 -

40). _floor
Calculates the floor of a double precision float.

BYTE _floor(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 Px [in] Pointer to the float parameter

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 97 -

41). _absf
Calculate the absolute value of a single precision float.

float _absf(float x);

Parameters:

 X [in] Float parameter.

Return Values:

 Absolute value of x.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 98 -

42). _abs
Calculate the absolute value of a double precision float.

BYTE _abs(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 px [in] Pointer to the float parameter

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 99 -

43). _fmodf
Calculates the single precision floating-point remainder.

float _fmodf(

 float x,

 float y);

Parameters:

 X [in] Dividend.
 Y [in] Divisor.

Return Values:

 The floating-point remainder of x / y.

Remarks:

 The _fmodf function calculates the floating-point remainder f of x / y such

that x = i * y + f, where i is an integer, f has the same sign as x, and the

absolute value of f is less than the absolute value of y.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 100 -

44). _fmod
Calculates the double precision floating-point remainder.

BYTE _fmod(

 DOUBLE_T *presult,

 DOUBLE_T *px,

 DOUBLE_T *py);

Parameters:

 presult [out] Pointer to the result.
 px [in] Pointer to the dividend.
 py [in] Pointer to the divisor.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 The fmod function calculates the floating-point remainder f of x / y such

that x = i * y + f, where i is an integer, f has the same sign as x, and the

absolute value of f is less than the absolute value of y.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 101 -

45). _expf
Calculates the exponential.

float _expf(float x);

Parameters:

 X [in] Exponent.

Return Values:

 This function returns the exponential value of the floating-point

parameter, x, if successful.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 102 -

46). _exp
Calculates the exponential .

BYTE _exp(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 px [in] Pointer to the exponent

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 103 -

47). _logf
Calculates logarithms of a single precision float.

float _logf(float x);

Parameters:

 X [in] Float parameter.

Return Values:

 Logarithm of the single precision float x.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 104 -

48). _log
Calculates logarithms of a double precision float.

BYTE _log(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 px [in] Pointer to the float parameter

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None..

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 105 -

49). _log10f
Returns the base 10 logarithm of a specified single precision float.

float _log10f(float x);

Parameters:

 X [in] Float parameter.

Return Values:

 The base 10 logarithm of a specified single precision float.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 106 -

50). _log10
Returns the base 10 logarithm of a specified double precision float.

BYTE _log10(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 px [in] Pointer to the float parameter

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None..

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 107 -

51). _sqrtf
Calculates the square root of a single precision float.

float _sqrtf(float x);

Parameters:

 X [in] Float parameter.

Return Values:

 The square root of the single precision float, x.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 108 -

52). _sqrt
Calculates the square root of a double precision float.

BYTE _sqrt(

 DOUBLE_T *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 px [in] Pointer to the float parameter

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None..

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 109 -

53). _powf
Calculates x raised to the power of y where both x and y are of single

precision float.

float _powf(

 float x,

 float y);

Parameters:

 X [in] Base.
 Y [in] Exponent.

Return Values:

 The value of x
y
.

Remarks:

 None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 110 -

54). _pow
Calculates x raised to the power of y where both x and y are of double

precision float.

BYTE _pow(

 DOUBLE_T *presult,

 DOUBLE_T *px,

 DOUBLE_T *py);

Parameters:

 presult [out] Pointer to the result.
 px [in] Pointer to the base.
 py [in] Pointer to the exponent

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None..

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 111 -

Attention: the following functions have only double float version.

55). _modf
Divide a double precision float to integral part and fractional part.

BYTE _modf(

 DOUBLE_T *presult,

 DOUBLE_T *px,

 DOUBLE_T *intptr);

Parameters:

 presult [out] Pointer to the fractional part.
 px [in] Pointer to the double to be divided.
 intptr [out] Pointer to the integral part.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None..

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 112 -

56). _frexp
Divide a double precision float to the product of a fraction and power of 2.,

please refer to the ―Remarks‖ section of this table.

BYTE _frexp(

 DOUBLE_T *presult,

 DOUBLE_T *px,

 int *expptr);

Parameters:

 presult [out] Pointer to the fraction part.
 px [in] Pointer to the double to be divided.
 expptr [out] Pointer to the exponent

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This function calculate presult, expptr such that:
*px = *presult × 2

(*expptr)

, where 1 > *presult >= 0.5

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 113 -

57). _ldexp
Calculate the power of a double precision float and 2, please refer to

―Remarks‖ section of this table.

BYTE _ldexp(

 DOUBLE_T *presult,

 DOUBLE_T *px,

 int exp);

Parameters:

 presult [out] Pointer to the result.
 px [in] Pointer to the float parameter
 exp [in] Exponent of 2.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 The calculation formula is like that:
*presult = *px × 2

(exp)

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 114 -

58). _fdcmp
Compare two double precision floats.

char _fdcmp(

 DOUBLE_T *px,

 DOUBLE_T *py);

Parameters:

 px [in] Pointer to the first float parameter.
 py [in] Pointer to the second float parameter.

Return Values:

 Return comparison result, three possible values:

· 1 means:*px > *py

· 0 means:*px = *py

· -1 means:*px < *py

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 115 -

59). _dtof
Type conversion: from double precision to single precision float.

BYTE _dtof(

 float *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the single precision float..
 px [in] Pointer to the double precision float..

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 116 -

60). _ftod
Type conversion: from single precision to double precision float.

BYTE _ftod(

 DOUBLE_T *presult,

 float *px);

Parameters:

 presult [out] Pointer to the double precision float..
 px [in] Pointer to the single precision float..

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 117 -

61). _dtol
Type conversion: from double precision float to 32 bits signed integer

（long）.

BYTE _dtol(

 long *presult,

 DOUBLE_T *px);

Parameters:

 presult [out] Pointer to the result.
 px [in] Pointer to the double precision float..

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 118 -

62). _altod
Type conversion: from 32 bits signed integer(long)to double precision float.

BYTE _altod(

 DOUBLE_T *presult,

 long *px);

Parameters:

 presult [out] Pointer to the result.
 px [in] Pointer to the 32 bits signed integer.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 119 -

63). _lltod
Type conversion: from 32 bits unsigned integer（long）to double precision

float.

BYTE _lltod(

 DOUBLE_T *presult,

 DWORD *px);

Parameters:

 presult [out] Pointer to the result.
 px [in] Pointer to the 32 bits unsigned integer.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 None.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 120 -

8.5. Cryptographic Algorithm

Senselock ELprovides four categories of fundamental cryptographic algorithms: Asymmetric

cipher algorithm(RSA), Symmetric cipher algorithm(DES/TDES), hash algorithm(SHA1) and real

random number generator. These cryptographic algorithms can not only be used in software

copyrights protection, but more importantly, can help developers to expand their softwares to

network.. For example, they can be used together to implement a capable Remote Update

platform.

To use these cryptographic algorithm functions properly, one need to have some basic

understanding about cryptographic algorithm and application. This manual is not professional

material for cryptography study and only describes the algorithms and protocols involved by our

device briefly. To know more deeper knowledge, please refer to the relevant books in this field.

All the cryptographic algorithm has corresponding software version implementation. For

example, you can use software-version functions to encrypt data, and then use corresponding SES

of internal hardware to decrypt them. For more detail about software version cryptographic

algorithms, please refer to the ―Appendix A: Cryptographic Algorithms Reference‖.

One special point: some of the cryptographic algorithm SES functions are kept only for

compatibility purpose. Those functions have worse common-usability compare to their new

version but have no security problem. To get better technology support in the future, it‘s NOT

recommended to use them in your program. All of those functions will be commented explicitely

in this document.

Senselock ELDeveloper Guide SES Reference

- 121 -

64). _tdes_enc
TDES Encryption, ECB mode.

BYTE _tdes_enc(

 BYTE *pbKey,

 BYTE bLen,

 BYTE *pbData);

Parameters:

 pbKey [in] 16 octets DES key.
 bLen [in] Length of the data to be encrypted 1~248.
 pbData [in,out] Plaintext to be encrypted when input, ciphertext when

output.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This function accomplish triple-DES encryption in ECB mode. It will divide the

plaintext by eight octets a block, and generate a ciphertext block of the same length

for every block independently. There is no relation between different blocks. If one

want to use different encryption mode i.e. CBC, please encapsulate other code based

on this function yourself or please refer to the sample code of Senselock ELSDK.

Please try to make the length of input plaintext to be multiple of eight, or try to do

some padding to meet the requirement. Otherwise, this function will do some

padding to plaintext automatically, and this will make the decrypted result contains

some padding data that may lead to confusion.

The length of ciphertext is always multiple of 8, and it maybe longer than that of the

plaintext(if the latter is not multiple of 8). Because the plaintext and the ciphertext

use the same buffer, the former will be overwritten by the latter. So if you want to

use the plaintext after calling this SES, please backup it to other memory block. In

the other hand, you need sufficient buffer to hold the output ciphertext to avoid

possible memory leak since the ciphertext maybe longer than the plaintext.

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

 please refer to the sample code of _tdes_dec().

Senselock ELDeveloper Guide SES Reference

- 122 -

65). _tdes_dec
TDES decryption in ECB mode, paired with _tdes_enc().

BYTE _tdes_dec(

 BYTE *pbKey,

 BYTE bLen,

 BYTE *pbData);

Parameters:

 pbKey [in] 16 octets DES key.
 bLen [in] Length of the data to be decrypted, 8~248,must be multiple

of eight, refer to the ―Remarks‖ section.
 pbData [in,out] Ciphertext when input, plaintext when output.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This function accomplish triple-DES decryption in ECB mode. It will divide the

ciphertext by eight octets a block, and generate a plaintext block of the same length

for every block independently. There is no relation between different blocks. If one

want to use different decryption mode i.e. CBC, please encapsulate other code based

on this function yourself or please refer to the sample code of Senselock ELSDK.

The length of ciphertext genereated by triple-DES encryption is always the multiple

of eight, so this function demands inputting ciphertext with the length to be multiple

of eight.

Because the ciphertext and the plaintext use the same buffer, the former will be

overwritten by the latter. So if you want to use the ciphertext after calling this SES,

please backup it to other memory block..

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

/* This demonstrate how to use Triple-DES algorithm to

 encrypt some text and decrypt it later.

*/

#include “ses_v3.h”

#include “string.h”

char plaintext[24] = “This is some test data.”;

BYTE ciphertext[24] = “”;

BYTE buff[24] = “”;

BYTE deskey[16] = {0x23,0x5a,0xb8,0x91,0xfc,0xe2,0x6c,0x9a,

 0x3a,0x98,0x34,0x8e,0x1d,0xaa,0x97,0xe1};

void main()

{

 BYTE ret = 0;

 /* Encrypt…*/

 memcpy(ciphertext, plaintext, 24);

Senselock ELDeveloper Guide SES Reference

- 123 -

 ret = _tdes_enc(deskey, 24, ciphertext);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 }

 /* Decrypt… */

 memcpy(buff, ciphertext, 24);

 ret = _tdes_dec(deskey, 24, buff);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 }

 /* Now the content of buff should be the same as

 plaintext. */

 _set_response(1,&ret);

 _exit();

}

Senselock ELDeveloper Guide SES Reference

- 124 -

66). _des_enc
DES encryption in ECB mode.

BYTE _des_enc(

 BYTE *pbKey,

 BYTE bLen,

 BYTE *pbData);

Parameters:

 pbKey [in] 8 octets DES key.
 bLen [in] Length of the data to be encrypted, 1~248.
 pbData [in,out] Plaintext to be encrypted when input, ciphertext when

output.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This function accomplish DES encryption in ECB mode. It will divide the plaintext

by eight octets a block, and generate a ciphertext block of the same length for every

block independently. There is no relation between different blocks. If one want to use

different encryption mode i.e. CBC, please encapsulate other code based on this

function yourself or please refer to the sample code of Senselock ELSDK.

This function uses key of eight octets, effective bits of which is 56 bits and is

considered to be not secure enough. Please try to use _tdes_enc() which has 112

bits effective key instead. _tdes_enc() is secure enough and since the calculation

is done by the DES/TDES accelerator in Senselock ELhardware, there will be no

difference in performance/speed between DES and TDES.

Please try to make the length of input plaintext to be multiple of eight, or try to do

some padding to meet the requirement. Otherwise, this function will do some

padding to plaintext automatically, and this will make the decrypted result contains

some padding data that may lead to confusion.

The length of ciphertext is always multiple of 8, and it maybe longer than that of the

plaintext(if the latter is not multiple of 8). Because the plaintext and the ciphertext

use the same buffer, the former will be overwritten by the latter. So if you want to

use the plaintext after calling this SES, please backup it to other memory block. In

the other hand, you need sufficient buffer to hold the output ciphertext to avoid

possible memory leak since the ciphertext maybe longer than the plaintext.

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

 please refer to the sample code of_des_dec().

Senselock ELDeveloper Guide SES Reference

- 125 -

67). _des_dec
DES decryption in ECB mode. Paired with _des_enc().

BYTE _des_dec(

 BYTE *pbKey,

 BYTE bLen,

 BYTE *pbData);

Parameters:

 pbKey [in] DES key of 8 octets.
 bLen [in] Length of the data to be decrypted, 8~248, must be multiple

of 8, please refer to ―Remarks‖ section.
 pbData [in,out] Ciphertext when input, plaintext when output.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This function accomplish triple-DES decryption in ECB mode. It will divide the

ciphertext by eight octets a block, and generate a plaintext block of the same length

for every block independently. There is no relation between different blocks. If one

want to use different decryption mode i.e. CBC, please encapsulate other code based

on this function yourself or please refer to the sample code of Senselock ELSDK.

This function uses key of eight octets, effective bits of which is 56 bits and is

considered to be not secure enough. Please use _tdes_enc() which has 112 bits

effective key instead. _tdes_enc() is secure enough and since the calculation is

done by the DES/TDES accelerator in Senselock ELhardware, there will be no

difference in performance/speed between DES and TDES.

The length of ciphertext genereated by DES encryption is always the multiple of

eight, so this function demands inputting ciphertext with the length to be multiple of

eight.

Because the ciphertext and the plaintext use the same buffer, the former will be

overwritten by the latter. So if you want to use the ciphertext after calling this SES,

please backup it to other memory block..

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

/* This demonstrate how to use DES algorithm to encrypt

 some text and decrypt it later.

 This sample is almost the same as that using DES.

*/

#include “ses_v3.h”

#include “string.h”

char plaintext[24] = “This is some test data.”

BYTE ciphertext[24] = “”;

BYTE buff[24] = “”;

BYTE deskey[8] = {0x23,0x5a,0xb8,0x91,0xfc,0xe2,0x6c,0x9a};

Senselock ELDeveloper Guide SES Reference

- 126 -

void main()

{

 BYTE ret = 0;

 /* Encrypt…*/

 memcpy(ciphertext, plaintext, 24);

 ret = _des_enc(deskey, 24, ciphertext);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 }

 /* Decrypt… */

 memcpy(buff, ciphertext, 24);

 ret = _des_dec(deskey, 24, buff);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 }

 /* Now the content of buff should be the same as

 plaintext. */

 _set_response(1,&ret);

 _exit();

}

Senselock ELDeveloper Guide SES Reference

- 127 -

68). _sha1_init
SHA1initialization. SHA1 is completed using a group of functions. For more detail ,

please refer to ―Remarks‖ section.

BYTE _sha1_init(HASH_CONTEXT *pContext);

Parameters:

 pContext [in] HASH context.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This function initialize HASH context.

A typical HASH procedure includes:

· Initalize context using _sha1_init();

· Add data, this can be achieved by calling _sha1_update()several times;

· Get hash result using sha1_ final(),purge the hash context at the same

time;

Function group _sha1_xxx()need to maintain a buffer in the system, which will

be used for the completion of RSA signagture verification. For detail, please refer to

the sample code of _rsa_veri().

Current version of Senselock ELdoesn‘t allow multi HASH processes to run

concurrently. Namely, one HASH process can run only after the previous one has

completed. For example, the following procedure will not get corret results:
 …

 HASH_CONTEXT hctx1, hctx2;

 BYTE message1[] = “test1”;

 BYTE message2[] = “test2”;

 BYTE len1 = 5;

 BYTE len2 = 5;

 BYTE digest1[20], digest2[20];

 _sha1_init(&hctx1);

 _sha1_init(&hctx2);

 _sha1_update(&hctx1, message1, len1);

 _sha1_update(&hctx2, message2, len2);

 _sha1_final(&hctx1, digest1);

 _sha1_final(&hctx2, digest2);

…

Correct approach is:
 …

 HASH_CONTEXT hctx1, hctx2;

 BYTE message1 = “test1”;

 BYTE message2 = “test2”;

 BYTE len1 = 5;

 BYTE len2 = 5;

 BYTE digest1[20], digest2[20];

 _sha1_init(&hctx1);

 _sha1_update(&hctx1, message1, len1);

 _sha1_final(&hctx1, digest1);

Senselock ELDeveloper Guide SES Reference

- 128 -

 _sha1_init(&hctx2);

 _sha1_update(&hctx2, message2, len2);

 _sha1_final(&hctx2, digest2);

…

Requirements:

 Hardware version: Senselock EL2.x

Example Code:

 please refer to the sample code of _sha1_final().

Senselock ELDeveloper Guide SES Reference

- 129 -

69). _sha1_update
Adding SHA1 data can be achieved using a calling sequence. For detail, please refer to

the ―Remarks‖ section of _sha1_init().

BYTE _sha1_update(

 HASH_CONTEXT *pContext,

 BYTE *pbData,

 BYTE bLen);

Parameters:

 pContext [in] HASH Context.
 pbData [in] Data to be added this time.
 bLen [in] Length of the data to be added this time.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

Use this function to add data to be hashed. A big data block can be divided to several

smaller ones and added to hash function by calling _sha1_update()

continuously.

Software version SHA1 has no limitation for the inputted data, SenseLock EL, in the

other hand, can‘t exeed 8191 bytes for the totally inputted data due to its limitation of

resource.

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

 please refer to the sample code of _sha1_final().

Senselock ELDeveloper Guide SES Reference

- 130 -

70). _sha1_final
Get the result of SHA1 HASH and then purge the context. SHA1 is achieved by a

group of functions. For more detail, please refer to the ―Remark‖ section of

_sha1_init().

BYTE _sha1_final(

 HASH_CONTEXT *pContext,

 BYTE *pbResult);

Parameters:

 pContext [in] HASH Context.
 pbResult [out] 20 bytes hash result returned.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

After calling this SES, the system will also copy the result to a specific HASH buffer

so as to be used in signature verification process. For relations between HASH buffer

and signature verification, please refer to the ―Remarks‖ section of_rsa_veri().

pbResult must have sufficient storage so as to contain the HASH result.

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

/* This demonstrates how to get digest of a message. */

#include “ses_v3.h”

HASH_CONTEXT hctx;

BYTE message1[] = “This is the first part of test message.”;

BYTE message2[] = “This is the secont part of test message.”;

BYTE digest[20];

void main()

{

 BYTE ret = 0;

 ret = _sha1_init(&hctx);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 ret = _sha1_update(&hctx, message1, sizeof(message1));

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 ret = _sha1_update(&hctx, message2, sizeof(message2));

Senselock ELDeveloper Guide SES Reference

- 131 -

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 ret = _sha1_final(&hctx, digest);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 /* Now we get the digest of message1 and message2. */

 _set_response(1, &ret);

 _exit();

}

Senselock ELDeveloper Guide SES Reference

- 132 -

71). _rsa_enc
RSA Encryption.

BYTE _rsa_enc(

 BYTE bMode,

 WORD wFid,

 BYTE bLen,

 BYTE *pbData);

Parameters:

 bMode [in] Calculation Mode:

· RSA_CALC_NORMAL Direct calculation without

encoding.

· RSA_CALC_PKCS Encryption according to

PKCS#1 standard.
 wFid [in] Public file ID
 bLen [in] Length of the data to be encrypted, different for two

modes::

· RSA_CALC_NORMAL 128 bytes

· RSA_CALC_PKCS 1~117 bytes
 pbData [in,out] Plaintext when input, 128 bytes ciphertext when output.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This SES completes the RSA Public key encryption, and the length of the public key

is 1024 bits. Different with DES encryption, you have to specify an effective RSA

public key file for this function instead of giving the key value directly.

The result after encryption is always 128 bytes long, you have to allocate sufficient

storage for pbData.

When using this function for data encryption, setting bMode to be

RSA_CALC_PKCS is highly recommended. If using RSA_CALC_NORMAL, try to

make the first byte of the 128 bytest data to be 0, otherwise, it may cause the inputted

data to be greater than the modulus and this may lead to error. In fact, when inputting

data shorter than 128 bytes under RSA_CALC_NORMAL mode, the function will

do some padding automatically(add zeroes in the forehead). But, we don‘t

recommend to input data shorter than 128 bytes. RSA_CALC_NORMAL is

commonly used in constructing other algorithm protocols, for instance, digital

signature.

There are several ways of generating RSA key pair files in Senselock ELdevice:

· Call API S4WriteFile()or PS4WriteFile() to generate a pair of RSA

key files in SenseLock EL;

· Call API S4WriteFile()or PS4WriteFile() to import a pre-generated

RSA key pair into SenseLock EL;

· Using the Devtest.exe in SDK to generate or import a pair of RSA keys to

SenseLock EL;

For more detail, please refer to the sample code of corresponding API or relevant

instructions for the tool.

Senselock ELDeveloper Guide SES Reference

- 133 -

RSA keys in Senselock ELare stored using TLV（Tag+Length+Value）format.

The following illustrates the Public key format, 136 bytes in total:
typedef struct {

 struct {

 char tag;

 unsigned char length;

 unsigned char value[0x80];

 }n;

 struct {

 char tag;

 unsigned char length;

 unsigned char value[0x04];

 }e;

} COS_RSA_PUBLIC_KEY;

Private key can be stored in two formats. One is in quintuple format which takes 330

bytes, is faster, and recommended to use.:
typedef struct {

 struct {

 char tag;

 unsigned char length;

 unsigned char value[0x40];

 }p;

 struct {

 char tag;

 unsigned char length;

 unsigned char value[0x40];

 }q;

 struct {

 char tag;

 unsigned char length;

 unsigned char value[0x40];

 }dp;

 struct {

 char tag;

 unsigned char length;

 unsigned char value[0x40];

 }dq;

 struct {

 char tag;

 unsigned char length;

 unsigned char value[0x40];

 }qinv;

} COS_RSA_PRIVATE_KEY;

The second one is a simplified format, but it‘s slow , not so commonly used and not

recommended. It takes 260 bytes totally:
typedef struct {

 struct {

 char tag;

 unsigned char length;

 unsigned char value[0x80];

 }n;

 struct {

 char tag;

 unsigned char length;

Senselock ELDeveloper Guide SES Reference

- 134 -

 unsigned char value[0x80];

 }d;

} COS_RSA_PRIVATE_KEY_2;

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

 please refer to the sample code of _rsa_dec().

Senselock ELDeveloper Guide SES Reference

- 135 -

72). _rsa_dec
RSA decryption.

BYTE _rsa_dec(

 BYTE bMode,

 WORD wFid,

 BYTE bLen,

 BYTE *pbData);

Parameters:

 bMode [in] Calculation mode:

· RSA_CALC_NORMAL Calculation directly without

encoding

· RSA_CALC_PKCS Decryption according to

PKCS#1 standard
 wFid [in] ID of private key file.
 bLen [in] Length of the data to be decrypted, must be 128 bytes.
 pbData [in,out] Ciphertext when input, plaintext when output.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This SES completes the RSA Private key decryption, and the length of the private

key is 1024 bits. Different with DES encryption, you have to specify a effective RSA

private key file for this function instead of giving the key value directly.

If decrypting using RSA_CALC_NORMAL mode, the result is always 128 bytes

long; If using RSA_CALC_PKCS, the result is ―data length‖ + ―plaintext‖. Namely,

first byte of pbData is the length of plaintext, and the following bytes are the

decrypted plaintext.

You must adopt the same mode for encryption and decryption, or there will be

encoding error.

For the generation and format of RSA keys, please refer to the ―Remarks‖ section of

_rsa_enc().

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

/* This demonstrates how to use RSA algorith to encrypt

 some text and and decrypt it later.

 The sample code supposes a pair of valid RSA key files

 have already been created.

*/

#include “ses_v3.h”

#include “string.h”

char plaintext[24] = “This is some test data.”;

BYTE ciphertext[128] = “”;

BYTE buff[128] = “”;

WORD pubkey_fid = 0xc001;

WORD prikey_fid = 0xc002;

Senselock ELDeveloper Guide SES Reference

- 136 -

void main()

{

 BYTE ret = 0;

 /* Encrypt… */

 memcpy(ciphertext, plaintext, 24);

 ret = _rsa_enc(RSA_CALC_PKCS, pubkey_fid, 24, ciphertext);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 /* Decrypt…

 Notice that the ciphertext is 128 bytes long. */

 memcpy(buff, ciphertext, 128);

 ret = _rsa_dec(RSA_CALC_PKCS, prikey_fid, 128, buff);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 /* Now buff[0] should be length of plaintext, that is, 24.

 And buff[1..25] should be the same as plaintext. */

 _set_response(1, &ret);

 _exit();

}

Senselock ELDeveloper Guide SES Reference

- 137 -

73). _rsa_sign
RSA digital signature. There are some limitations for using this SES, for detail, please

refer to the ―Remarks‖section of this table.

BYTE _rsa_sign(

 BYTE bMode,

 WORD wFid,

 BYTE bLen,

 BYTE *pbData);

Parameters:

 bMode [in] Signing mode:

· RSA_CALC_NORMAL

Encrypt the HASH value directly using private key;

· RSA_CALC_HASH

Do the HASH operation first for the inputted data and then

encrypt the result using private key;

· RSA_CALC_PKCS

Sign the HASH value according to PKCS#1 standard;

· RSA_CALC_HASH|RSA_CALC_PKCS

Do the HASH operation first and then sign the HASH result

according to PKCS#1 standard;
 wFid [in] ID of private key file.
 bLen [in] The data to be signed, having different requirement for

different modes:

· RSA_CALC_NORMAL 20 bytes

· RSA_CALC_HASH 1~128 byte(s)

· RSA_CALC_PKCS 20 bytes

· RSA_CALC_HASH|RSA_CALC_PKCS 1~128 byte(s)
 pbData [in,out] Plaintext or HASH value when input, 128 octets

signature when output.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This SES completes RSA private key signing operation, and the key length is 1024

bits while the signing result is 128 bytes.

In the four modes above, RSA_CALC_PKCS is a standard digital signing scheme. If

you want your signature has a good compatibility with other signing system, you

must use this mode. If inputted plaintext are relatively short, you can use

RSA_CALC_HASH|RSA_CALC_PKCS to do the hashing and signing together. The

other two are not recommended.

This SES supports only one HASH algorithm – SHA1. To use other HASH

algorithm, use _rsa_dec() instead. For a real implemented sample, please refer to

the ―case study‖ part of SDK. For the generation and format of RSA keys, please

refer to the ―Remarks‖ section of _rsa_enc().

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

Senselock ELDeveloper Guide SES Reference

- 138 -

 please refer to the sample code of_rsa_veri().

Senselock ELDeveloper Guide SES Reference

- 139 -

74). _rsa_veri
This SES do RSA digital signature verification according to the HASH buffer and

inputted signature. There are some limitations for using this function, and that‘s why

we recommend you to use other means of signature verification demonstrated in ―case

study‖ of SDK to replace this SES. For detail, please refer to ―Remarks‖ section of this

table.

BYTE _rsa_veri(

 BYTE bMode,

 WORD wFid,

 BYTE bLen,

 BYTE *pbData);

Parameters:

 bMode [in] Calculation mode:

· RSA_CALC_NORMAL

Decrypt the signature directly and compare with HASH

buffer to verify;

· RSA_CALC_PKCS

According to the Hash buffer and signature, do the standard

PKCS#1 verification;
 wFid [in] ID of public key file.
 bLen [in] Length of digital signature, must be 128.
 pbData [in] The signature.

Return Values:

 If verified successfully, returns SES_SUCCESS. Otherwise, it returns corresponding

error code.

Remarks:

This SES completes RSA signature verification, and the key length is 1024 bits.

Different with _rsa_sign(), this verification function doesn‘t provide hashing

calculation for the plaintext, you have to call corresponding hashing SES to do

HASH first and then call this SES. Besides, this SES takes only HASH value from

system‘s HASH buffer and can‘t take directly inputted HASH value, and that means

you can‘t get the plaintext‘s HASH value by other ways(i.e. do the hashing in

software). If the amount of plaintext is big, there are some inconvenience to handle.

In this case, one better way is to use _rsa_enc() to implement a verification for

the HASH value in your own EXF . For more detail, please refer to the sample code

of ―case study‖ in SDK.

This SES supports only one HASH algorithm – SHA1. To use other HASH

algorithm, use _rsa_enc() instead. For a real implemented sample, please refer to the

―case study‖ part of SDK. For the generation and format of RSA keys, please refer to

the ―Remarks‖ section of _rsa_enc().

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

/* This demonstrates how to make a signature of a short

 message and then verify it later.

 The sample code supposes a pair of valid RSA key files

Senselock ELDeveloper Guide SES Reference

- 140 -

 have already been created.

*/

#include “ses_v3.h”

#include “string.h”

char message[24] = “This is some test data.”;

BYTE signature[128] = “”;

BYTE digest[20];

WORD pubkey_fid = 0xc001;

WORD prikey_fid = 0xc002;

HASH_CONTEXT hctx;

void main()

{

 BYTE ret = 0;

 /* Make signature… */

 memcpy(signature, message, 24);

 ret = _rsa_sign(RSA_CALC_HASH|RSA_CALC_PKCS, prikey_fid,

 24, signature);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 /* Verify… */

 /* Hash the message first… */

 _sha1_init(&hctx);

 _sha1_update(&hctx, message, 24);

 _sha1_final(&hctx, digest);

 /* Start to verify… */

 ret = _rsa_veri(RSA_CALC_PKCS, pubkey_fid, 128, signature);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 /* ret = SES_SUCCESS means the signature is valid. */

 _set_response(1, &ret);

 _exit();

}

Senselock ELDeveloper Guide SES Reference

- 141 -

75). _rand
Hardware generated real random number.

BYTE _rand(

 BYTE bLen,

 BYTE *pbData);

Parameters:

 bLen [in] Length of the random number to be generated, 1~255.
 pbData [out] Random number generated.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

Random number produced by this SES is a hardware generated real one and needs

no initialization..

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

/* This demonstrates how to generate 128 bytes of random

 data and returned it to PC.

*/

#include “ses_v3.h”

/* Customized IO package encoding structure. */

typedef struct {

 /* Flag may be used for error-code or fucntion code. */

 BYTE flag;

 /* Data length in buff. */

 BYTE len;

 /* Data transmitted in or out. */

 BYTE buff[1];

} IO_PACKAGE;

unsigned char tmp[128+2];

IO_PACKAGE *out = (IO_PACKAGE *)tmp;

void main()

{

 BYTE ret = 0;

 /* Generate random data… */

 ret = _rand(128, out->buff);

 if (ret != SES_SUCCESS)

 {

 out->flag = ret;

 out->len = 0;

 _set_response(2+out->len, (BYTE *)out);

 _exit();

 }

Senselock ELDeveloper Guide SES Reference

- 142 -

 /* Return random data… */

 out->flag = ret;

 out->len = 128;

 _set_response(2+out->len, (BYTE *)out);

 _exit();

}

Senselock ELDeveloper Guide SES Reference

- 143 -

8.6. Memory Operation

Functions of this category provide basic memory operations, i.e. memory copy, memory

move etc. They are offered for the same purpose as single precision float function: to enhance the

efficiency of code execution and decrease the size of objective executable. If one doesn‘t care

about the efficiency of execution and the size of objective executable, he can use those functions

defined in string.h , for example, memcpy().

76). _mem_copy
Copy data between memory buffers, similar as memcpy()in standard C.

BYTE _mem_copy(

 void *pDest,

 void *pSrc,

 BYTE bLen);

Parameters:

 pDest [in] Destination address.
 pSrc [in] Source address.
 bLen [in] Length of the data to be copied.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

Different with memcpy in standard C, _mem_copy returns SES error code instead

of a pointer to destination address.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 144 -

77). _mem_move
Move data from one buffer to another. Overlay of destination buffer and source buffer

is handled, similar as memmove()in standard C.

BYTE _mem_move(

 void *pDest,

 void *pSrc,

 BYTE bLen);

Parameters:

 pDest [in] Destination address.
 pSrc [in] Source address.
 bLen [in] Length of the data to be moved.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

Different with memmove in standard C, _mem_move returns SES error code instead

of a pointer to destination address.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 145 -

78). _mem_set
Fill the buffer with the value specified, similar as memset()in standard C.

BYTE _mem_set(

 void *pDest,

 BYTE c,

 BYTE bLen);

Parameters:

 pDest [in] Destination address.
 c [in] Value to be filled in.
 bLen [in] Length of the buffer to be filled.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

Different with memset in standard C, _mem_set returns SES error code instead of

a pointer to destination address.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 146 -

79). _mempool_init
Initialize the starting address and size of memory pool, used for dynamic memory

management. It must be called before any one of _malloc(),_calloc()or

_realloc().

BYTE _mempool_init(

 void *pStart,

 WORD wSize);

Parameters:

 pStart [in] Starting address of memory pool, must be a pointer to

XRAM.
 wSize [in] Size of the memory pool.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

The internal resources in Senselock ELcan‘t be used as freely as in PC. Try to use

static memory instead of dynamic means unless you are very familiar with memory

structure and usage.

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

 _mempool_init((void xdata*)0x0400, 1024);

Senselock ELDeveloper Guide SES Reference

- 147 -

80). _malloc
Malloc a memory block in the memory pool set by _mempool_init().

void* _malloc(WORD wSize);

Parameters:

 wSize [in] Size of the memory to be malloced.

Return Values:

 Return pointer to the starting address of the memory block malloced if succeed,

NULL otherwise.

Remarks:

Must call _mempool_init() first to set an available memory pool.

The internal resources in Senselock ELcan‘t be used as freely as in PC. Try to use

static memory instead of dynamic means unless you are very familiar with memory

structure and usage.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 148 -

81). _calloc
Allocate an array in the memory pool set by _mempool_init() with elements

initialized to 0.

void* _calloc(

 WORD wNobj,

 WORD wSize);

Parameters:

 wNobj [in] Number of the elements.
 wSize [in] Length in bytes of each element.

Return Values:

 Return pointer to the starting address of the memory block malloced if succeed,

NULL otherwise.

Remarks:

Must call _mempool_init() first to set an available memory pool.

The internal resources in Senselock ELcan‘t be used as freely as in PC. Try to use

static memory instead of dynamic means unless you are very familiar with memory

structure and usage.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 149 -

82). _realloc
Reallocate memory blocks in the memory pool set by _mempool_init().

void* _realloc(

 void *pointer,

 WORD wSize);

Parameters:

 pointer [in] Pointer to previously allocated memory block.
 wSize [in] New size in bytes.

Return Values:

 Return pointer to the starting address of the memory block malloced if succeed,

NULL otherwise.

Remarks:

Must call _mempool_init() first to set an available memory pool.

The internal resources in Senselock ELcan‘t be used as freely as in PC. Try to use

static memory instead of dynamic means unless you are very familiar with memory

structure and usage.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 150 -

83). _free
Free allocated memory block.

BYTE _free(void *pointer);

Parameters:

 pointer [in] Pointer to the memory block to be freed.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 151 -

84). _invert
Invert the content of memory buffer.

BYTE _invert(

 void *pvdata,

 BYTE bLen);

Parameters:

 pvdata [in] Pointer to the memory buffer.
 bLen [in] Length of the data to be inverted.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This SES can invert the higher and lower part of a specified memory buffer, used for

the conversion between data of Big-Endian and Little-Endian.

For example, data in a memory block are: 0x12, 0x34, 0x56, 0x78. After calling

_invert(), they become to be: 0x78 0x56 0x34 0x12.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 152 -

85). _mem_cmp
Compare characters in two buffers.

char _mem_cmp(

 void *pdest,

 void *psrc,

 BYTE length);

Parameters:

 pdest [in] First buffer.
 psrc [in] Second buffer.
 bLen [in] Number of characters.

Return Values:

 Return Values indicates the relationship between the buffers:

· < 0 pdest less than psrc

· = 0 pdest identical to psrc

· > 0 pdest greater than psrc

Remarks:

The _mem_cmp function compares the first bLen bytes of pdest and psrc and returns

a value indicating their relationship.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 153 -

8.7. Time

Two time functions are provided in Senselock ELhardware: Timer and Real Time Clock. The

former is a standard function for all Senselock ELdevice, and the latter is supported only for

specific version of Senselock ELwith clock function.

Timer is substantively a 64 bits counter of CPU. You can use the current reading of the

counter and the frequency of CPU to calculate the real elapsed time. Timer can be used only when

Senselock ELis working properly. On the other hand, Real Time Clock is powered by independent

battery, it can work finely even when Senselock ELis unplugged from computer.

86). _set_timer
Set timer‘s initial value and working mode.

BYTE _set_timer(

 BYTE bMode,

 DWORD *pdwCount);

Parameters:

 bMode [in] Timer mode:

· 0 Non-cycle mode, the timer stops when the counter

number overflows

· 1 Cycle mode, the timer restarts when the counter

number overflows

· 2 Cycle reset mode, the timer restarts from initial

value after the counter number overflows
 pdwCount [in] Pointer to the initial value.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

The timer uses counting-up mechanism.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 154 -

87). _start_timer
Start the timer according to the specified working mode and initial value.

BYTE _start_timer();

Parameters:

 None.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 155 -

88). _stop_timer
Stop the timer.

BYTE _stop_timer();

Parameters:

 None.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

None.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 156 -

89). _get_timer
Get current reading of the timer.

BYTE _get_timer(DWORD *pdwCount);

Parameters:

 pdwCount [out] Address of the variable for storing current reading of the

timer.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

The timer uses counting up mechanism, and the counter increases itself by one for 64

CPU clock cycles. The CPU frequency, of before and including v2.3.2 EL is

16MHZ; of after v2.3.2 EL is 18MHZ. The time span represented by one counter

unit is:

1*64/16000000 = 4µs (before and including

v2.3.2)

1*64/18000000 = 3.6µs (after v2.3.2)

The counter number is stored in a DWORD variable, so the total time can be

represented by the counter before its overflow is:

 0xffffffff*4/1000000/3600 ≈ 4.77 hours (before and including

v2.3.2)

 0xffffffff*3.6/1000000/3600 ≈ 4.29 hours (after v2.3.2)

It is available to use development test tool, or device check tool to get the device

version number, or go to the struct SENSE4 CONTEXT‘s filed to get. When the

hardware version of EL is 2.3.4, the dsVersion is 0x00020304. Note: the SENSE4

CONTEXT must be enumerated successfully. About the SENSE4 CONTEXT, please

refer to the note of S4Enum in 9.1.1.

Requirements:

 Hardware version:Senselock EL2.x

Example Code:

/* This demonstrate how to use a Timer to determine the running

time of a functon. */

#include “ses_v3.h”

DWORD tick_count = 0;

float time_used = 0;

void foo()

{

 /* Operations here…*/

}

void main()

{

 BYTE ret = 0;

 tick_count = 0;

 ret = _set_timer(1, &tick_count);

Senselock ELDeveloper Guide SES Reference

- 157 -

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 ret = _start_timer();

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 foo();

 ret = _get_timer(&tick_count);

 if (ret != SES_SUCCESS)

 {

 _set_response(1, &ret);

 _exit();

 }

 /* Get time used in millisecond. */

 time_used = (tick_count – 0) * 4/1000;

 _stop_timer();

 _set_response(1, &ret);

 _exit();

}

Senselock ELDeveloper Guide SES Reference

- 158 -

90). _time
Get current time, returning the number of seconds since midnight(00:00:00), January 1,

1970, coordinated universal time. Similar as time()in standard C.

BYTE _time(time_t *ptime);

Parameters:

 Ptime [out] Address of the variable for holding the current time.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

The self-powered clock returns time of GMT format. If there is time difference

problem, one may need to adjust it according to local time zone.

If there is no suffient battery power, even after you may replace it with a new battery,

this function will still return error. Initialization after battery replacement can only be

done by Senselock ELmanufacturer.

Different with time() in standard C, _time()returns SES error code instead of a

time value. So please make sure the effectiveness of input pointer parameter(for

returning data).

Requirements:

 Hardware version: Senselock EL2.3 with clock function.

Example Code:

 please refer to the sample code of_gmtime().

Senselock ELDeveloper Guide SES Reference

- 159 -

91). _mktime
Converts the local time(time structure) to a calendar value(time_t).

BYTE _mktime(

 time_t *ptime,

 RTC_TIME_T *ptm);

Parameters:

 ptime [out] Pointer to the converted time_t.
 ptm [in] Pointer to a RTC_TIME_T struct, please refer to ―Remarks‖

section.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

RTC_TIME_T struct definition:

typedef struct _RTC_TIME_T {

 BYTE second; /* second, 0~59 */

 BYTE minute; /* minute, 0~59. */

 BYTE hour; /* hour, 0~24. */

 BYTE day; /* day of month, 1~31. */

 BYTE week; /* day of the week, Sunday is 0, Monday

 is 1, and so on. */

 BYTE month; /* month, 0~11, January is 0 */

 WORD year; /* year (100- 138, Year 2000 is 100. */

} RTC_TIME_T;

When convert from RTC_TIME_T to time_t, member variable week is ignored.

Different with mktime()in standard C, _mktime() doesn‘t return time_t. It

returns SES error code instead. Parameter ptime then is used to return the value of

time_t.

Requirements:

 Hardware version: Senselock EL2.3 with clock function.

Example Code:

 please refer to the sample code of_gmtime().

Senselock ELDeveloper Guide SES Reference

- 160 -

92). _gmtime
Convert a time_t value to RTC_TIME_T struct.

BYTE _gmtime(

 time_t *ptime,

 RTC_TIME_T *ptm);

Parameters:

 ptime [in] Pointer to time_t variable.
 ptm [out] Pointer to RTC_TIME_T strucrt, please refer to the

―Remarks‖ section of this table.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This function is for the convenience of handling time in Senselock ELinternally. It

request that the year represented by time_t is not earlier than A.D.2000, or it will

lead to error.

Different with gmtime()in standard C, _gmtime()returns SES error code.

Parameter ptm is used to return the RTC_TIME_T struct.

Requirements:

 Hardware version: Senselock EL2.3 with clock function.

Example Code:

/* This demonstrate how to set an expiration date on specific

function */

#include “ses_v3.h”

#define MY_SUCCESS 0x00

#define MY_ERROR_SES 0x01

#define MY_ERROR_EXPIRED 0x02

RTC_TIME_T exp = {0,0,0,20,0,11,105};/* 2005.12.20 */

time_t et;

BYTE foo()

{

 BYTE ret = 0;

 time_t t = 0;

 /* Get current time. */

 ret = _time(&t);

 if (ret != SES_SUCCESS)

 {

 return MY_ERROR_SES;

 }

 /* Convert from RTC_TIME_T structure. */

 ret = mktime(&et, &exp);

 if (ret != SES_SUCCESS)

 {

 return MY_ERROR_SES;

Senselock ELDeveloper Guide SES Reference

- 161 -

 }

 /* Compare to expiration date. */

 if (t > et)

 {

 /* if you want to display current time, you can convert

 it to RTC_TIME_T structure. For example:

 RTC_TIME_T cur;

 …

 ret = _gmtime(&t, &cur);

 _set_response(sizeof(RTC_TIME_T), (BYTE *)&cur);

 _exit();

 */

 return MY_ERROR_EXPIRED;

 }

 /* do something here. */

 return MY_SUCCESS;

}

void main()

{

 foo();

 _exit();

}

Senselock ELDeveloper Guide SES Reference

- 162 -

8.8. Macro and Auxiliary function

For convenience of programming, Senselock ELprovides some additional macros and

auxiliary functions which are implemented by coding instead of being offered by Senselock

ELoperating system.

93). _swap_u16
This Macro is used to invert a 2 bytes memory.

_swap_u16(__x__);

Parameters:

 __x__ [in] Address of a 2 bytes variable.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This macro is kept for compatibility purpose only, try to use invert()instead. The

latter is defined as follows:
#define _swap_u16(__x__) _invert(__x__, 2)

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 163 -

94). _swap_u32
This Macro is used to invert a 4 bytes memory.

_swap_u32(__x__);

Parameters:

 __x__ [in] Address of a 4 bytes variable..

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This macro is kept for compatibility purpose only, try to use invert()instead. The

latter is defined as follows:
#define _swap_u32(__x__) _invert(__x__, 4)

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 164 -

95). LE16_TO_CC
This macro converts a Little-Endian 2 bytes variable(i.e. short) to a byte sequence

supported by current compiler.

LE16_TO_CC(__x__);

Parameters:

 __x__ [in] Address of a 2 bytes variable.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This macro can convert byte sequence automatically according to current compiler

type.One can write compiler-independent codes using this macro.

Because Keil C51 uses Big-Endian, while the other two compilers use Little-Endian,

this macro is equal to _swap_u16() when used in Keil C51, and it does nothing

when used in other two compilers.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 165 -

96). LE32_TO_CC
This macro converts a Little-Endian 4 bytes variable(i.e. long) to a byte sequence

supported by current compiler.

LE32_TO_CC(__x__);

Parameters:

 __x__ [in] Address of a 4 bytes variable.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This macro can convert byte sequence automatically according to current compiler

type.One can write compiler-independent codes using this macro.

Because Keil C51 uses Big-Endian, while the other two compilers use Little-Endian,

this macro is equal to _swap_u32() when used in Keil C51, and it does nothing

when used in other two compilers.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 166 -

97). CC_TO_LE16
This macro, contrary to LE16_TO_CC, convert a 2 bytes variable to Little-Endian

according to compiler type.

CC_TO_LE16(__x__);

Parameters:

 __x__ [in] Address of a two bytes variable.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This macro can convert byte sequence automatically according to current compiler

type.One can write compiler-independent codes using this macro.

Because Keil C51 uses Big-Endian, while the other two compilers use Little-Endian,

this macro is equal to _swap_u16() when used in Keil C51, and it does nothing

when used in other two compilers.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 167 -

98). CC_TO_LE32
This macro, contrary to LE32_TO_CC, convert a 4 bytes variable to Little-Endian

according to compiler type.

CC_TO_LE32(__x__);

Parameters:

 __x__ [in] Address of a 4 bytes variable.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This macro can convert byte sequence automatically according to current compiler

type.One can write compiler-independent codes using this macro.

Because Keil C51 uses Big-Endian, while the other two compilers use Little-Endian,

this macro is equal to _swap_u32() when used in Keil C51, and it does nothing

when used in other two compilers.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 168 -

99). BE16_TO_CC
This macro converts a Big-Endian 2 bytes variable(i.e. short) to a byte sequence

supported by current compiler.

BE16_TO_CC(__x__);

Parameters:

 __x__ [in] Address of a 2 bytes variable.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This macro can convert byte sequence automatically according to current compiler

type.One can write compiler-independent codes using this macro.

Because Keil C51 uses Big-Endian, while the other two compilers use Little-Endian,

this macro does nothing when used in Keil C51, and it is equal to

_swap_u16()when used in other two compilers.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 169 -

100). BE32_TO_CC
This macro converts a Big-Endian 4 bytes variable(i.e. long) to a byte sequence

supported by current compiler.

BE32_TO_CC(__x__);

Parameters:

 __x__ [in] Address of a 4 bytes variable.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This macro can convert byte sequence automatically according to current compiler

type.One can write compiler-independent codes using this macro.

Because Keil C51 uses Big-Endian, while the other two compilers use Little-Endian,

this macro does nothing when used in Keil C51, and it is equal to

_swap_u32()when used in other two compilers.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 170 -

101). CC_TO_BE16
This macro, contrary to BE16_TO_CC, convert a 2 bytes variable to Little-Endian

according to compiler type.

CC_TO_BE16(__x__);

Parameters:

 __x__ [in] Address of a 2 bytes variable.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This macro can convert byte sequence automatically according to current compiler

type.One can write compiler-independent codes using this macro.

Because Keil C51 uses Big-Endian, while the other two compilers use Little-Endian,

this macro does nothing when used in Keil C51, and it is equal to _swap_u16()

when used in other two compilers.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 171 -

102). CC_TO_BE32
This macro, contrary to BE32_TO_CC, convert a 4 bytes variable to Little-Endian

according to compiler type.

CC_TO_BE32(__x__);

Parameters:

 __x__ [in] Address of a 4 bytes variable.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This macro can convert byte sequence automatically according to current compiler

type.One can write compiler-independent codes using this macro.

Because Keil C51 uses Big-Endian, while the other two compilers use Little-Endian,

this macro does nothing when used in Keil C51, and it is equal to _swap_u32()

when used in other two compilers.

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 172 -

103). _atod
Convert a string to double precision float.

BYTE _atod(

 DOUBLE_T *presult,

 char *pstr);

Parameters:

 presult [out] Pointer to the double precision float struct.
 Pstr [in] String representation of a float, for example ―3.1415926‖.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

This function is provided with source code. Its header file and source code are

atod.h and atod.c, please search those files under the same directory as

ses_v3.h

Using this function will consume much system resource. If there is no too strict

requirement for the initial value, try to use other system functions to assign a

double float, for instance , _ftod(), or to initialize memory storage directly.

This function used to be named _strtod(), and is changed to be _atod()due to

naming conflict in new version compiler.

Requirements:

 Hardware version: Senselock EL2.3

Senselock ELDeveloper Guide SES Reference

- 173 -

104). DEFINE_AT
Define a variable at a specified address according to compiler type.

DEFINE_AT(TYPE, NAME, ADDRESS, MEMORY)

Parameters:

 TYPE [in] Type of the variable to be defined.
 NAME [in] Variable name.
 ADDRESS [in] Address of the variable specified.
 MEMORY [in] memory zone:

· RAM_EXT xdata

· RAM_INT_DE data

· RAM_INT_ID idata

· ROM code memory

Return Values:

 None..

Remarks:

None..

Requirements:

 Hardware version:Senselock EL2.x

Senselock ELDeveloper Guide SES Reference

- 174 -

8.9. Get Device Info

A SES which can read basic hardware information is added in Senselock EL2.3.2. It can read

the GUSN(Global Unique Serial Number) and developer ID (also called: customer ID).

105). _get_gbdata
Read GUSN or developer ID.

BYTE _get_gbdata(

 BYTE bFlag,

 BYTE* pbData,

 BYTE bLen);

Parameters:

 bFlag [in] Flag:

· GLOBAL_SERIAL_NUMBER get the 8 octets GUSN

· GLOBAL_CLIENT_NUMBER get the 4 octets

customer ID
 pbData [out] Buffer for holding data read.
 bLen [in] size of the buffer pbData.

Return Values:

 Return SES_SUCCESS if succeed or corresponding error code otherwise.

Remarks:

 Parameters bLen is used to represent the size of pbData. It is not necessary for its

value to be big enough for holding all the data. For example, if you specify bLen =5

when reading hardware GUSN(8 octets), this function gets only the formost 5 bytes

of GUSN and returns no error.

Requirements:

 Hardware version: Senselock EL2.3.2

 Compiler-dependent: Support only Skit and Keil, Do NOT support Rkit

Senselock ELDeveloper Guide SES Reference

- 175 -

8.10. SES Error Code List

Error code Value Comments

SES_SUCCESS 0x00 Succeed

SES_MSC 0x01 Unsupported SES invoking

SES_PARA 0x02 Invalid parameter

SES_EEPROM 0x03 Error writing EEPROM

SES_RAM 0x04 Memory violation

SES_XCOS 0x05 Error from XCOS

SES_FILEID 0x11 Incorrect file ID, file not found

SES_FILE_ACCESS 0x12 Error accessing file

SES_FILE_SELECT 0x13 Error selecting file

SES_HANDLE 0x14 Invalid file handle

SES_RANGE 0x15 File out of range

SES_FILE_SPACE 0x16 Insufficient file storage

SES_FILE_EXISTING 0x17 File already exists

SES_KEYID 0x21 Error Key file ID

SES_KEY_ACCESS 0x22 Access to key file failed

SES_SHA1 0x23 SHA1 calculation error

SES_RAND 0x24 Error getting random number

SES_RSA 0x25 RSA calculation error

SES_RSAVERIFY 0x26 RSA verification failed, incorrect signature

SES_INVALID_POINTER 0x30 Invalid memory pointer

SES_INVALID_SIZE 0x31 Invalid memory size

SES_REAL_TIME 0x40 Error reading real time

Senselock ELDeveloper Guide SES Reference

- 176 -

8.11. Double Precision Float Boundary Limitation

Under some marginal condition, double precision float calculation may have bias.

For functions marked with # in following table, the absolute value for inputting parameter

can‘t be less than 1×10
-154

, (exclude 0), or it will exceed the boundary of float representable by

SenseLock EL. When the result exeeds the representable boundary, Return Value(presult) will

NOT indicate being out of range.

Function protocol Boundary Condition Clarification

BYTE _mult(

DOUBLE_T* presult,

DOUBLE_T* px,

DOUBLE_T* py)

＃

BYTE _sin(

DOUBLE_T* presult,

DOUBLE_T* px)

＃When the value of *px is close to multiple ofπ/2, there will be

relatively big bias in result. When it is bigger than 1×105 时,the

calculation precision will decrease to 9 effective digits due to

accumulated bias.

BYTE _cos(

DOUBLE_T* presult,

DOUBLE_T* px)

＃When the value of *px is close to multiple ofπ/2, there will be

relatively big bias in result. When it is bigger than 1×105 时,the

calculation precision will decrease to 9 effective digits due to

accumulated bias.

BYTE _tan(

DOUBLE_T* presult,

DOUBLE_T* px)

＃When the value of *px is close to multiple ofπ/2, there will be

relatively big bias in result. When it is bigger than 1×105 时,the

calculation precision will decrease to 9 effective digits due to

accumulated bias.

BYTE _asin(

DOUBLE_T* presult,

DOUBLE_T* px)

＃When the value of *px exeeds the domain of ±1 , Return Values

indicates NO error.

BYTE _acos(

DOUBLE_T* presult,

DOUBLE_T* px)

＃When the value of *px exeeds the domain of ±1 , Return Values

indicates NO error.

BYTE _atan(

DOUBLE_T* presult,

DOUBLE_T* px)

＃

BYTE _sinh(

DOUBLE_T* presult,

DOUBLE_T* px)

When the absolute value of *px is less than 1×10-8 (exclude 0), the

calculation precision will decrease to 9 effective digits. The value of

*px can NOT be greater than 709.

BYTE _cosh(

DOUBLE_T* presult,

DOUBLE_T* px)

When the absolute value of *px is less than 1×10-8 (exclude 0), the

calculation precision will decrease to 9 effective digits. The value of

*px can NOT be greater than 709.

BYTE _tanh(

DOUBLE_T* presult,

DOUBLE_T* px)

When the absolute value of *px is less than 1×10-8 (exclude 0), the

calculation precision will decrease to 9 effective digits. The value of

*px can NOT be greater than 709.

BYTE _atan2(

DOUBLE_T* presult,

DOUBLE_T* px,

DOUBLE_T* py)

＃The absolute value of *px÷*py must between 1×10-154and 0

（exclude 0）

BYTE _fmod(

DOUBLE_T* presult,

There will be relatively big bias when the value of *px÷*py is

larger than 106

Senselock ELDeveloper Guide SES Reference

- 177 -

DOUBLE_T* px,

DOUBLE_T* py)

BYTE _exp(

DOUBLE_T* presult,

DOUBLE_T* px)

The value of *px can‘t bigger than 709

BYTE _pow(

DOUBLE_T* presult,

DOUBLE_T* px,

DOUBLE_T* py)

Even when the scale of result is less than the representable boundary

of double, it will NOT be set to zero.

BYTE _modf(

DOUBLE_T* presult,

DOUBLE_T* px,

DOUBLE_T* intptr)

The absolute value of *px must between 1×1018 and 1×10-23.

(include 0)

BYTE _ldexp(

DOUBLE_T* presult,

DOUBLE_T* px,

int exp)

Even when the scale of result is less than the representable boundary

of double, it will NOT be set to zero.

BYTE _dtof(

float* presult,

DOUBLE_T* px)

Even when *px is bigger than the representable boundary of double,

return value indicates NO overflow.

Even when *px is less than the representable boundary of double, it

will NOT be set to zero.

BYTE _dtol(

long* presult,

DOUBLE_T* px)

Even when *px is bigger than the representable boundary of long,

return value indicates NO overflow.

Even when *px is less than the representable boundary of long, it

will NOT be set to zero.

- 178 -

9. API Reference

Senselock ELprovides two groups of API functions, used for local and network operations

respectively. Local APIs are used for Senselock ELdesktop version, and for the local operations

(initialization and development) of network version; Network APIs are used for accessing

Senselock ELof network version remotely.

Local API is sense4.dll, Network API is sense4user.dll, both of them are offed with static lib

as well.

Please note:

As the v3.0 network dongle has different file system from the previous, the device being

created by the previous API or tool, are only accessable to previous API or tool and vice versa,

otherwise, the communication error will come out. About the detail on network dongle, please

refer to the 7
th
 Chapter Manual on Network Dongle, for standalone version, there is no such

restrictions.

All network dongle refered in this guide, unless being specific noted, is pointing to v3.0 API,

tool, and network device created by v3.0 API.

The following table illustrates the relationship between software API and the dongle.

Table 8-1

 Desktop version

SenseLock EL

Network version SenseLock EL

Local API Applicable Applicable, but limited to local operations

such as initialization etc only.

Network

API

Not applicable Applicable, used for accessing Senselock

ELdevice remotely in software.

Senselock ELSDK provides APIs of various language versions, i.e. C, Delphi, Java ect.

According to the programming language used in your software, you can choose corresponding

API library. To those languages not supported in SDK, you can use dll (dynamic link library)

instead.

For better result in software protection, it‘s recommended to use static library of these

programming languages. For better compatibility and more convenience in software upgrading, dll

(dynamic link library) is recommended.

In the chapter of ―Develop Senselock ELcodes‖, we make some basic introduction to the

usage of API functions. This chapter, will further focus on the detail of these API functions and on

what attentions should be paid when using them. If one hopes to understand the general procedure

of accessing Senselock ELby API, please refer to the fourth chapter ―Develop Senselock

ELcodes‖.

Some APIs are used only in the stage of developing dongle applications, while some other

APIs are used for accessing the dongle in the end user environment. NEVER use API functions

marked as “developer only” in the client end as shown in the following table.

Table 8-1 Illustration of the conditions for using API functions

Senselock ELDeveloper Guide API Reference

- 179 -

API Function Remarks Using

Conditions

Support

ive API

S4Enum List all the devices currently connected Developer,

user

Local &

Network

S4Open Connect the device with specified index Developer,

user

Local &

Network

S4OpenEx Connect the device specified using

specific mode

Developer,

user

Local

S4Close Close connection to the device specified Developer,

user

Local &

Network

S4Control Send control codes to the device, for

example, the lighting control of LED

Developer,

user

Local &

Network
13

S4CreateDi

r

Create a new directory under current

directory, it‘s recommended to use

S4CreateDirEx instead.

Developer

only

Local

S4CreateDirEx Create a new directory under current

directory

Developer

only

Local

S4ChangeDir Change current working directory Developer,

user

Local &

Network

S4EraseDir Erase all the files and sub directories

under the directory specified.

Developer

only

Local

S4VerifyPin Verify PIN code Developer,

user

Local &

Network

S4ChangePin Change PIN code Developer

only
14

Local

S4WriteFile File creation, update; RSA key pair

generation, setup authorization

User only Local

S4Execute Execute VM EXF User only Local &

Network

S4ExecuteEx Execute VM EXF or XA EXF User only Local

PS4WriteFile Similar to S4WriteFile,can operate

disk file directly

Developer

only

Local

S4Startup Revoked — —

S4Clearup Revoked — —

9.1. API List

This section will make detailed introduction to all Senselock ELAPIs. To each API, we will

illustrate its function from two aspects: ―local‖ and ―network‖.

13 Local and Network API supports different Control Code, please check out note of S4Control.
14 If it‘s to change user PIN, one can also use this function in the client end.

Senselock ELDeveloper Guide API Reference

- 180 -

9.1.1. S4Enum

Local: List all the available Senselock ELdevices currently connrected to the local

computer, and store the device information obtained to S4CtxList.

Network: List all the software protection services on network version server and store

the obtained information to S4CtxList.

DWORD WINAPI S4Enum(

 SENSE4_CONTEXT *pS4CtxList,

 DWORD *pdwSize);

Parameters:

 pS4CtxList [out] Pointer to SENSE4_CONTEXT struct array.
 pdwSize [in,out] The size of SENSE4_CONTEXT struct array(in byte)

when input, length of the data actually returned when output. If

pS4CtxList=NULL or the size of the provided struct array is

insufficient, the function will return error and save the size of

the storage actually needed to the variable specified by

pdwSize.

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

Before calling any other functions, one must call this function to obtain device

information. Information for each device is stored in a single struct

SENSE4_CONTEXT which is defined as follows:

typedef struct {

 DWORD dwIndex;

 DWORD dwVersion;

 S4HANDLE hLock;

 BYTE reserve[12];

 BYTE bAtr[MAX_ATR_LEN];

 BYTE bID[MAX_ID_LEN];

 DWORD dwAtrLen;

} SENSE4_CONTEXT, *PSENSE4_CONTEXT;

Explanation for each member variable of this struct follows below:
dwIndex Index for current device, begin with 0.

dwVersion Senselock ELhardware version number, currently support:

· SENSE4_CARD_TYPE_V2_00 version 2.0

· SENSE4_CARD_TYPE_V2_01 version 2.1

· SENSE4_CARD_TYPE_V2_02 version 2.2

· SENSE4_CARD_TYPE_V2_30 version 2.3

hLock Device Handle.

reserve System reserved.
bAtr ATR information, system reserved.

bID Device ID. If there is an ATR file in the hardware, then bID

will hold a self defined ID(content of the ATR file),

otherwise, it will hold the Hardware Unique Serial

Number(HUSN) of the hardware. For detail information

about ATR file, please refer to the Remark section of

S4CreateDirEx().For network API, bID will hold the

ID of the master key on network server upon function

Senselock ELDeveloper Guide API Reference

- 181 -

return.

dwAtrLen Length of ATR, system reserved.

If you doesn‘t know previously the size of SENSE4_CONTEXT struct array needed,

you can set the input parameter pS4CtxList to be NULL, then the parameter

pdwSize will return the memory storage actually needed. If the system does not

connect Elite EL, parameter pdwSize will return 0, and S4_SUCCESS.

The number of Senselock ELconnected in current system can be calculated using the

value returned by parameter pdwSize as follows:

 Num = *pdwSize/sizeof(SENSE4_CONTEXT)

To network version, it lists available network services instead of real devices.

Because network service and local Senselock ELdevice are very similar in real

usage, we directly call SENSE4_CONTEXT to be ―device information‖ for the sake

of convenience.

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version

Sample:

 Please refer to the section 4.2.1 ―General access‖.

Senselock ELDeveloper Guide API Reference

- 182 -

9.1.2. S4Open

Local: Connect to the Senselock ELdevice specified. Connection must be established

before any access can be made.

Network: Obtain the connection to the network version device server.

DWORD WINAPI S4Open(SENSE4_CONTEXT *pS4Ctx);

Parameters:

 pS4Ctx [in,out] Pointer to the SENSE4_CONTEXT struct of the

Senselock ELdevice to be opened.

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

Use struct SENSE4_CONTEXT returned from S4Enum() as input parameter to

establish a connection to this device.

To local API, this function connects to the device using share mode, namely, device

connected supports multiple-process access; To network API, there is no

differentiation for exclusive mode and share mode. For details regarding exclusive

mode and share mode, please refer to the ―Remarks‖ section of S4OpenEx().

If there are multiple Senselock ELdevices in local system, it is very important to

assure that correct device is opened. Two important reasons: one is that if connected

to the wrong device, the software will mistakenly think that the dongle is illegal and

thus result in the software execution error; the other one is that if have operated the

dongle of another software, it will change the status of that dongle and thus infulence

the normal execution of that software. To avoid these problems and open correct

dongle, one can take the following two commonly used approaches:

The first one, create and manage your own device ID.

This is the most effective method. When creating the root directory of a dongle, one

can create a self-defined ATR file, content of which contains self-defined 8 octets

device ID. When running S4Enum()to list devices, IDs of all the dongles will be

stored in the bID member variables of SENSE4_CONTEXT struct array, and thus

you can distinguish different devices according to different IDs. For the details

regarding how to create ATR file, please refer to the Remarks section of

S4CreateDirEx().

The second one, use dongle‘s ―Developer ID‖ (also called ―customer ID‖).

Senselock ELoffers the service of customizing ―Developer ID‖, which means

Senselock can allocate different ―Developer ID‖ for different software vendors. This

ID has no relation with HUSN or self-defined device ID and it can be acquired by

S4Control(). Software can distinguish different devices according to different

―Developer ID‖. For details regarding the information and usage of ―Developer ID‖,

please refer to the Remarks section of S4Control().

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version

Sample:

 Please refer to the section 4.2.1 ―General access‖.

Senselock ELDeveloper Guide API Reference

- 183 -

9.1.3. S4OpenEx

Local: Connect to the specified Senselock ELdevice using specified mode. Connection

must be established before any access can be made. This function is the upgrade

version of S4Open(), for detail, please refer to the Remarks section of this

table.

Network:Not supported.

DWORD WINAPI S4OpenEx(

 SENSE4_CONTEXT *pS4Ctx,

 S4OPENINFO *pS4OpenInfo);

Parameters:

 pS4Ctx [in,out] Pointer to the SENSE4_CONTEXT struct of the

Senselock ELdevice to be opened. The content of the struct is

returned by S4Enum().
 pS4OpenInfo [in] Pointer to the S4OPENINFO struct, describing the way how

the device is to be opened.

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

The major difference between this function and S4Open()is: S4Open()connects

the Senselock ELdevice using share mode, namely, after a process has already

connected to the Senselock ELdevice, other processes can still connect and make

access to that device; S4OpenEx(),however, can specify the mode when

connection is attempted. When the device is opened using exclusive mode, other

process won‘t be able to connect to the same device concurrently.

S4OPENINFO struct is defined as follows:

typedef struct _S4OPENINFO {

 DWORD dwS4OpenInfoSize;

 DWORD dwShareMode;

} S4OPENINFO;

Explanation for each member variable of this struct follows below:

dwS4OpenInfoSize Must be sizeof(S4OPENINFO).

dwShareMode Device connection mode, two modes are

currently supported:

· S4_EXCLUSIZE_MODE exclusive mode

· S4_SHARE_MODE share mode

For more, please refer to the Remarks section of S4Open().

For network verion on operating network, this function will void revoke and return

S4_SUCCESS.

Requirement:

 Hardware version: Senselock EL2.x desktop version, network version（Local

operations only）

Senselock ELDeveloper Guide API Reference

- 184 -

Sample:

/* This demonstrates how to open Senselock ELin exclusive mode.*/

 …

 SENSE4_CONTEXT s4ctx = {0};

 S4OPENINFO oinf = {0};

 DWORD ret = 0;

 /* Enumerate device here… */

 /* Open in exclusive mode… */

 oinf.dwS4OpenInfoSize = sizeof(S4OPENINFO);

 oinf.dwShareMode = S4_EXCLUSIZE_MODE;

 ret = S4OpenEx(&s4ctx, &oinf);

 …

Senselock ELDeveloper Guide API Reference

- 185 -

9.1.4. S4Close

Local: Close connection to the device specified.

Network: Close connection to the network version device server.

DWORD WINAPI S4Close(SENSE4_CONTEXT *pS4Ctx);

Parameters:

 pS4Ctx [in,out] Pointer to SENSE4_CONTEXT struct, pointing to an

opened Senselock ELdevice.

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

This function closes the connection to the device opened by S4Open()or

S4OpenEx().

Please notice that this function does NOT clear the security status of Senselock

ELdevice, it only closes the connection to that device. If you want to clear the

security status of the Senselock ELdevice utterly, please use S4Control()to send

S4_RESET_DEVICE control code to the device before calling this function.

Requirement:

 Hardware version: Senselock EL2.x desktop version, network version

Sample:

 Please refer to the section 4.2.1 ―General access‖.

Senselock ELDeveloper Guide API Reference

- 186 -

9.1.5. S4Control

Local:Sending control code to Senselock ELdevice.

Network:Only support obtaining, releasing authorization, setting overtime.

DWORD WINAPI S4Control(

 SENSE4_CONTEXT *pS4Ctx,

 DWORD dwCtlCode,

 VOID *pInBuff,

 DWORD dwInBuffLen,

 VOID *pOutBuff,

 DWORD dwOutBuffLen,

 DWORD *pdwBytesReturned);

Parameters:

 pS4Ctx [in] Pointer to SENSE4_CONTEXT struct, pointing to an

opened Senselock ELdevice.
 dwCtlCode [in] Control code. For currently available values, please

refer to the Remarks section.
 pInBuff [in] Pointer to the input buffer, storing additional data for

the control code. Please refer to the Remarks section.
 dwInBuffLen [in] Length of the data in input buffer pInBuff.

 pOutBuff [out] Pointer to the output buffer, storing the returned

information from device after sending the control code.
 dwOutBuffLen [in] Size of output buffer.
 pdwBytesReturned [out] Address for a DWORD variable, saving length of the

data actually returned to pOutBuff, can‘t be NULL.

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

Explanation for control codes currently supported by SenseLock EL：

The following control parameter are only supportive in Local API.

· S4_LED_UP

Purpose：LED up.

Input：None

Output：None

· S4_LED_DOWN

Purpose：LED down.

Input：None

Output：None

· S4_LED_WINK

Purpose：LED wink.

Input：1 byte integer, standing for the times of LED winking per second.

Output：None

· S4_GET_DEVICE_TYPE

Purpose：To get device type.

Input：None

Output：1 byte data, indicating device type: desktop version, network version master, or

network version slave.

· S4_GET_SERIAL_NUMBER

Purpose：To get Hardware Unique Serial Number(HUSN).

Input：None

Output：8 bytes HUSN.

Senselock ELDeveloper Guide API Reference

- 187 -

· S4_GET_VM_TYPE

Purpose：To get VM type. This control code has been revoked.

· S4_GET_DEVICE_USABLE_SPACE

Purpose：To get usable space of the device.

Input：None

Output：2 bytes WORD integer, standing for the size of usable device space.

· S4_SET_DEVICE_ID

Purpose：Set ATR information, namely self-defined ID, developer-level authorization is

required.

Input：8 bytes self-defined ID.

Output：None

· S4_RESET_DEVICE

Purpose：Reset device thus to clear current security status.

Input：None

Output：None

· S4_DF_AVAILABLE_SPACE

Purpose：To get available space of current directory.

Input：None

Output：2 bytes WORD integer, standing for the size of unused space under current

directory.

· S4_EF_INFO

Purpose：To get the attribute information of one file under current directory.

Input：None

Output：EFINFO struct, content of which will be illustrated later in this table.

· S4_SET_USB_MODE

Purpose：Set current device to run on standard USB mode, supported only for Senselock

EL2.3 or above .

Input：None.

Output：None

· S4_SET_HID_MODE

Purpose：Set current device to run on standard HID mode, supported only for Senselock

EL2.3 or above. This mode makes it unnecessary to install driver under

Windows98 or above operating systems, but has lower capability and efficiency

than standard USB mode. So it is not recommended.

Input：None.

Output：None

· S4_GET_CUSTOMER_NAME

Purpose：To get ―developer ID‖(customer ID) of current device, supported only for

Senselock EL2.1 or above .

Input：None.

Output：4 bytes ―developer ID‖.

· S4_GET_MANUFACTURE_DATE

Purpose：To get manufactured date of current device, supported only for Senselock EL2.1

or above.

Input：None.

Output：S4_MANUFACTURE_DATE struct, content of which will be illustrated later in

this table.

· S4_GET_CURRENT_TIME

Purpose：To get the current time of the hardware clock, supported only for Senselock

EL2.3 or above devices with clock function..

Input：None.

Output：a tm struct, which has the same definition as tm struct in C standard running

library. For detail, please refer to the definition below or the exemplifications in MSDN.

· S4_SET_NET_CONFIG

Purpose: After invoking S4CreateDir, S4CreateDirEx to create a netwrok dongle

and storing module authorization in the device memory, it is available to use

S4Control. By using this parameter, modify the authorization or mode of module

in network dongle.

Input: Point to the handle of S4NETCONFIG contruction.

Senselock ELDeveloper Guide API Reference

- 188 -

Output:none.
The following three parameters are only supportive in Network API instead of Local.

· S4_GET_LICENSE

Purpose: To obtain the authorization of assigned module. Before invoking

S4Execute on the client side, S4Control(S4_GET_LICENSE) must be invoked to

obtain the authorization. For a module of network dongle‘s context being opend

by S4Open, the authorization can be obtained once successfully. However, the

device canbe opened more than once, with multiple context to obtain the

authorization.

Input: To obtain the module ID, a WORD, for instance, to obtain the

authorization of module 0, then pInBuff imput a handle pointing to WORD 0,

dwInBuffLen inputs 2.

Output: None.

· S4_FREE_LICENSE

Purpose: to release the granted authorization.

Input:None.

Output:None.

· S4_MODIFY_TIMOUT

Purpose:Each client side could assign the time of overdue connection. If it is left

blank, then network management tool will take the default value. If during the

assigned period, the client side does not have any interaction with server (for

execution, obtaining authorizations), then the connection inbetween will be

stoped; the authorization obtained will be released; the safe mode will be

discharged. The time setting does not affect other contexts.

Input: The handle pointing to DWORD overtime is measured by seconds.

Output: None.

EFINFO struct is defined as follows：

typedef struct{

 WORD EfID;

 BYTE EfType;

 WORD EfSize;

} EFINFO, *PEFINFO;

Member variables：

EfID File ID.

EfType File type

EfSize File size.

tm struct is defined as follows：

struct tm {

 int tm_sec; /* seconds after the minute - [0,59] */

 int tm_min; /* minutes after the hour - [0,59] */

 int tm_hour; /* hours since midnight - [0,23] */

 int tm_mday; /* day of the month - [1,31] */

 int tm_mon; /* months since January - [0,11] */

 int tm_year; /* years since 1900 */

 int tm_wday; /* days since Sunday - [0,6] */

 int tm_yday; /* days since January 1 - [0,365] */

 int tm_isdst; /* daylight savings time flag */

};

S4_MANUFACTURE_DATE struct is defined below：

typedef struct {

 WORD wYear;

 BYTE byMonth;

Senselock ELDeveloper Guide API Reference

- 189 -

 BYTE byDay;

}S4_MANUFACTURE_DATE;

Member variables:

wYear Year.

byMonth Month 1~12.

byDay Day, 1~31.

S4NETCONFIG struct is defined as follows:

typedef struct S4NETCONFIG {

DWORD dwLicenseMode;

DWORD dwModuleCount;

S4MODULEINFO ModuleInfo[16];

} S4NETCONFIG;

Member variables:

dwLicense

Mode

Assign the mode of module authorization. Two modes:

Process mode, in obtaining any modules authorization, it

will take anthorization of this moduel; IP mode, then any

authorizations obtained by same module on the same

machine only take as one authorization by sharing.

dwModuleC

ount

Assigned module quantity. Max. 16.

ModuleInf

o

Info in detail of assigned module. Please refer to

S4MODULEINFO structural definition.

S4MODULEINFO struct is defined as follows:

typedef struct S4MODULEINFO {

 WORD wModuleID;

 WORD wLicenseCount;

} S4MODULEINFO;

Member variables:

wModuleID Module‘s ID (0-65535)
wLicenseC

ount

Total amount of authorization of assigned module

(0-65535)

Requirement:

 Hardware version:Senselock EL2.x desktop version, network version（Obtaining

authorization, releasing authorization, setting connection, other operations are locally

operatable）.

Sample:

 Please refer to the section 4.2.1 ―General access‖.

Senselock ELDeveloper Guide API Reference

- 190 -

9.1.6. S4CreateDir

Local: Create a new directory. If creation succeeds, the newly created directory will be

selected to be ―current directory‖. Using S4CreateDirEx()instead of this

function is recommended.

Network: Not supported

DWORD WINAPI S4CreateDir(

 SENSE4_CONTEXT *pS4Ctx,

 LPCSTR lpszDirID,

 DWORD dwDirSize,

 DWORD dwFlags);

Parameters:

 pS4Ctx [in] Pointer to SENSE4_CONTEXT struct, pointing to an

opened Senselock ELdevice.
 lpszDirID [in] Directory ID. In Senselock ELAPI, ID of file or directory is

passed in using a string. For example, string ―1234‖means that

the ID of directory or file is 0x1234. Please notice that the

inputted ID must contain 4 chars and be in hexadecimal format.

For example, to the directory ID 0x0012, you must input ―0012‖

instead of ―12‖. For network version, the parameter can be only

set as ―\‖, to create root directory only but others. For system

reserved IDs, please refer to the Remarks section of this table.
 dwDirSize [in] Size of the directory to be created, can‘t exceed the usable

space of current directory. When creating directory, the file

system itself will take certain amount of space: for desktop

version, it will take 197 bytes. For example, if one specifies

1024 bytes as the total space when creating the directory, the

actual usable space after creation will be: desktop

version(1024-197)=827.

Additionally, directory‘s file header will also take certain

amount of its parent directory‘s space(42 bytes).For example, if

one creates a sub directory of 1024 bytes under root directory, it

actually takes 1024+42=1066 bytes space of the root

directory totally.
 dwFlags [in] Flag options for creating a directory.

· S4_CREATE_ROOT_DIR

Create root directory. When this flag is set, directory ID

must be ”\”,dwDirSize must be 0,or there will be

parameter error.

· S4_CREATE_SUB_DIR

Create sub directory, effective only for desktop version.

· S4_CREATE_MODULE

Create a sub module, effective only for network version.

Sub module of network version is like a sub directory, it

can ONLY be created directly under the root directory

After the sub module is created, its license number will be

set to be 10 automatically. You can use

S4WriteFile()to modify the license number.

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code
otherwise.

Senselock ELDeveloper Guide API Reference

- 191 -

Remarks:

This function does NOT create ATR file automatically. For details regarding ATR

file, please refer to the Remarks section of S4CreateDirEx().

After a directory is created, its developer PIN and user PIN will be set to be default

value, namely, developer PIN: ”123456781234567812345678”, user

PIN: ”12345678”, you MUST modify the developer PIN to be a secret value. For

details about PINs ,please refer to section 1.3.1

 After using this function to create root directory in network version, the total

authorization of the device is 10, authorization mode will be Process mode, 3 modules

by default, 5 authorizations for each module (ID: 0, 1, 2)

For network version, root directory is only creatabe but any other subdirectories.

For standalone version, max 3 level file structure can be created (root directory being

taken as level one, like \0001\0002).

Some IDs are reserved by system, these include：0x0000,0x3f00 (reserved

as ID of root directory).

The ID of any directory‘s parent directory, sibling directory and subdirectory can not

be same.

For network version, the function is void invoked, and returen S4_SUCCESS.

Requirement:

 Hardware version: Senselock EL2.x desktop version, network version（Local

operations only）

Sample:

 Refer to the section 4.2.2 ―Developer level access‖

Senselock ELDeveloper Guide API Reference

- 192 -

9.1.7. S4CreateDirEx

Local: Create a new directory. If creation succeeds, the newly created directory will be

selected to be ―current directory‖.

Network: Not supported

DWORD WINAPI S4CreateDirEx(

 SENSE4_CONTEXT *pS4Ctx,

 LPCSTR lpszDirID,

 DWORD dwDirSize,

 DWORD dwFlags,

 S4CREATEDIRINFO *pCreateDirInfo);

Parameters:

 pS4Ctx [in] Pointer to SENSE4_CONTEXT struct, pointing to an

opened Senselock ELdevice.
 lpszDirID [in] Directory ID. In Senselock ELAPI, ID of file or

directory is passed in using a string. For example, string

―1234‖means that the ID of directory or file is 0x1234.

Please notice that inputted ID must contain 4 chars and be in

hexadecimal format. For example, to the directory ID

0x0012, you must input ―0012‖ instead of ―12‖. For network

version, the parameter can be only set as ―\‖, to create root

directory only but others. For system reserved IDs, please

refer to the Remarks section of this table.
 dwDirSize [in] Size of the directory to be created, can‘t exceed the

remaining space of current directory. When creating

directory, the file system itself will take certain amount of

space: for desktop version, it will take 197 bytes. For

example, if one specifies 1024 bytes as the total space when

creating the directory, the actual usable space after creation

will be: desktop version(1024-197)=827.

Additionally, directory‘s file header will also take certain

amount of its parent directory‘s space(42 bytes).For

example, if one creates a sub directory of 1024 bytes under

root directory, it actually takes 1024+42=1066 bytes space

of the root directory totally.
 dwFlags [in] Flag options for creating a directory.

· S4_CREATE_ROOT_DIR

Create root directory. When this flag is set, directory ID

must be ”\”,dwDirSize must be 0,or there will be

parameter error.

· S4_CREATE_SUB_DIR

Create sub directory, effective only for desktop version.

· S4_CREATE_MODULE

Create a sub module, effective only for network

version. Sub module of network version is like a sub

directory, it can ONLY be created directly under the

root directory

After the sub module is created, its license number will

be set to be 10 automatically. You can use

S4WriteFile()to modify the license number.
 pCreateDirInfo [in] This parameter is a pointer to the S4CREATEDIRINFO

struct. You must fill in this struct if dwFlags is set to be

S4_CREATE_ROOT_DIR .

Senselock ELDeveloper Guide API Reference

- 193 -

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

Using this API to create root directory will automatically create an ATR file which is

used to store self-defined ID (the content of this ID is from the member variable

szAtr[8] of struct pCreateDirInfo).

ATR file is of special type, and its content has only 8 bytes. If this file exists, then

when using S4Enum()to list devices, bID member variable of SENSE4_CONTEXT

struct will be the 8 octets content of ATR file. If you want the real 8 octets HUSN,

you must use S4Control()to send a S4_GET_SERIAL_NUMBER control code.

Using ATR file can well distinguish devices from different developers. For detail,

please refer to the Remarks section of S4Enum().

After a directory is created, its developer PIN and user PIN will be set to be default

value, namely, developer PIN: ”123456781234567812345678”, user

PIN: ”12345678”, you MUST modify the developer PIN to be a secret value. For

details about PINs ,please refer to section 1.3.1

Some IDs are reserved by system, these include：0x0000,0x3f00 (reserved

as ID of root directory).

The ID of any directory‘s parent directory, sibling directory and subdirectory can not

be same.

For network version, the function is void invoked, and returen S4_SUCCESS.

S4CREATEDIRINFO struct is defined as follows：

typedef struct _S4CREATEDIRINFO {

 DWORD dwS4CreateDirInfoSize;

 BYTE szAtr[8];

 S4NETCONFIG NetConfig;

} S4CREATEDIRINFO;

Explanation for each member variable of this struct follows below:

dwS4CreateDirInfoSize Size of the struct, must be:

sizeof(S4CREATEDIRINFO).

szAtr 8 octets content of ATR file, namely

self-defined ID.
NetConfig S4NETCONFIG struct, please refer to

the note of S4Control about

S4NETCONFIG. It should be regardless

to network version.

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version （ Local

operations only）

Sample:

/* This demonstrates how to create root dir with developer

 specific identifier. */

 …

Senselock ELDeveloper Guide API Reference

- 194 -

 SENSE4_CONTEXT s4ctx = {0};

 S4CREATEDIRINFO rinf = {0};

 DWORD ret = 0;

 /* Open and verify developer PIN here. Delete original root

 dir if exists… */

 /* Create new root dir… */

 rinf.dwS4CreateDirInfoSize = sizeof(S4CREATEDIRINFO);

 memcpy(rinf.szAtr, “SenseLock EL”, 8);

 ret = S4CreateDirEx(&s4ctx, “\\”, 0,

 S4_CREATE_ROOT_DIR,&rinf);

 …

Senselock ELDeveloper Guide API Reference

- 195 -

9.1.8. S4ChangeDir

Local: Select a new working directory.

Network: Supports invoking voidly.

DWORD WINAPI S4ChangeDir(

 SENSE4_CONTEXT *pS4Ctx,

 LPCSTR lpszPath);

Parameters:

 pS4Ctx [in] Pointer to SENSE4_CONTEXT struct,pointing to an opened

Senselock ELdevice.
 lpszPath [in] New working directory path. There are two ways for path

selecting:

· Absolute path, based on the root directory, for example

“\0001\0012”、“\”、“\0011” etc；

· Relative path, based on current directory, for example

“0001\0012”、“00e4”.

For local operations of network version, as only root directory

available, this function is only way to switch the root directory.

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

When change to another directory of upper level or the same level, the security status

of the original directory will be lost. Re-authentication is required if you want to

re-select the original directory.

The ID of any directory‘s parent directory, sibling directory and subdirectory can not

be same.

For network version, the function is void invoked, and returen S4_SUCCESS.

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version

Sample:

 Please refer to the section 4.2.1 ―General access‖.

Senselock ELDeveloper Guide API Reference

- 196 -

9.1.9. S4EraseDir

Local:Erase all the content of current directory, and reset it‘s security attributes.

Network:Not supported

DWORD WINAPI S4EraseDir(

 SENSE4_CONTEXT *pS4Ctx,

 LPCSTR lpszPath);

Parameters:

 pS4Ctx [in] Pointer to SENSE4_CONTEXT struct,pointing to an opened

Senselock ELdevice.
 lpszPath [in] Reserved, must be NULL.

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

If current directory is a sub directory, this function will erase all the files and children

directories of current directory(current directory itself will NOT be deleted). The

developer PIN and user PIN of current directory will also be restored to default

values.

If current directory is a root directory, this function will delete the root directory

directly, and that will make the dongle to get back to empty status.

For network version, it is only workable to delete whole root directory.

The ID of any directory‘s parent directory, sibling directory and subdirectory can not

be same.

For network version, the function is void invoked, and returen S4_SUCCESS.

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version （ Local

operations only）

Sample:

 Refer to the section 4.2.2 ―Developer level access‖

Senselock ELDeveloper Guide API Reference

- 197 -

9.1.10.S4VerifyPin

Local: Verify PINs(developer level or user level) of current directory so as to get

corresponding access privileges.

Network:Supports invoking voidly

DWORD WINAPI S4VerifyPin (

 SENSE4_CONTEXT *pS4Ctx,

 BYTE *pbPin,

 DWORD dwPinLen,

 DWORD dwPinType);

Parameters:

 pS4Ctx [in] Pointer to SENSE4_CONTEXT struct,pointing to an opened

Senselock ELdevice.
 pbPin [in] Pointer to the PIN array.
 dwPinLen [in] Length of the PIN, developer PIN is 24 octets, and user PIN

is 8 octets.
 dwPinType [in] PIN type to be verified：

· S4_DEV_PIN Verify developer PIN

· S4_USER_PIN Verify user PIN

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

Senselock ELmay be locked after several times of failed attempts in verifying

developer level PIN. When the hardware is locked, even Senselock can‘t unlock it.

To avoid accidentally being locked, the developer level PIN of Senselock ELtakes

measures of ―blocking strategy‖: If there are errors in the former 16 bytes of the

developer PIN, it won‘t result in being locked. If the former 16 bytes of the

developer PIN is correct, and there are errors in the latter 8 bytes, several attempts

will make Senselock ELto be locked. In the latter case, function‘s return value will

be: 0x63CX, in which X is between 0~F (means the remaining times of retrials

allowed before the Senselock EL‗s being locked) For example, if the function returns

0x63CA, it means that 10 attempts can be made before the dongle‘s being locked.

No matter how many failed attempts have been made to verify user PIN, it NEVER

locks the dongle.

All the PINs are effective only for current directory, for details, please refer to the

section 1.3.1 ―PIN‖

Local API only authenticate the PIN to root directory on network version.

For network version, the function is void invoked, and returen S4_SUCCESS.

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version （ Local

operations only）

Sample:

 Refer to the section 4.2.2 ―Developer level access‖ and section 4.2.3 ―User level

Senselock ELDeveloper Guide API Reference

- 198 -

access‖

Senselock ELDeveloper Guide API Reference

- 199 -

9.1.11.S4ChangePin

Local: Change PINs(developer level or user level) of current directory .

Network:Not supported

DWORD WINAPI S4ChangePin (

 SENSE4_CONTEXT *pS4Ctx,

 BYTE *pbOldPin,

 DWORD dwOldPinLen,

 BYTE *pbNewPin,

 DWORD dwNewPinLen,

 DWORD dwPinType);

Parameters:

 pS4Ctx [in] Pointer to SENSE4_CONTEXT struct,pointing to an opened

Senselock ELdevice.
 pbOldPin [in] Pointer to the old PIN
 dwOldPinLen [in] Length of the old PIN, developer PIN is 24 octets, and user

PIN is 8 octets;
 pbNewPin [in] Pointer to the new PIN.
 dwNewPinLen [in] Length of the new PIN, developer PIN is 24 octets, and user

PIN is 8 octets;
 dwPinType [in] Type of the PIN to be modified:

· S4_DEV_PIN change developer level PIN

· S4_USER_PIN change user level PIN

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

This function will automatically verify the old PIN so as to get corresponding

security authorization, so all the rules regarding PIN locking in the Remarks section

of S4VerifyPin() apply to this function too.

After PIN changing, corresponding security authorization will be obtained

automatically; PIN changing can be done only at the same level, namely, developer

level PIN can‘t be used to modify user level PIN.

Developer level authorization of current directory(network version module) must be

acquired before changing authentication PIN of network version. For details about

authentication PIN of network version, please refer to ―Direction for network version

usage‖.

All the PINs are effective only for current directory, for details, please refer to the

section 1.3.1 ―PIN‖

Local API only authenticate the PIN to root directory on network version.

For network version, the function is void invoked, and returen S4_SUCCESS.

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version （ Local

Senselock ELDeveloper Guide API Reference

- 200 -

operations only）

Sample:

 Refer to the section 4.2.2 ―Developer level access‖

Senselock ELDeveloper Guide API Reference

- 201 -

9.1.12.S4WriteFile

Local:Create, update file or modify license number etc.under current directory.

Network:Not supported

DWORD WINAPI S4WriteFile (

 SENSE4_CONTEXT *pS4Ctx,

 LPCSTR lpszFileID,

 DWORD dwOffset,

 LPVOID lpBuffer,

 DWORD dwBufferSize,

 DWORD dwFileSize,

 DWORD *pdwBytesWritten,

 DWORD dwFlags,

 BYTE bFileType);

Parameters:

 pS4Ctx [in] Pointer to SENSE4_CONTEXT struct,pointing to an

opened Senselock ELdevice.
 lpszFileID [in] File ID,there are special stipulation when dwFlags is

any of the following values:

· S4_KEY_GEN_RSA_FILE

Need to input IDs of two files, 8 bytes in total, the

former 4 bytes is the ID of a public file and the latter 4

bytes is the ID of corresponding private file.

· S4_SET_LICENCES

Must be NULL.
 dwOffset [in] Offset for file writing, when dwFlags is any of the

following values, it must be 0：

· S4_KEY_GEN_RSA_FILE

· S4_SET_LICENCES

· S4_RSA_PUBLIC_FILE

· S4_RSA_PRIVATE_FILE
 lpBuffer [in] Data content to be written in. Data format has relation

with file type. Please refer to explanation for the file types

in the Remarks section of this table.

When dwFlags is any of the following values, it must be

NULL；

· S4_KEY_GEN_RSA_FILE

· S4_SET_LICENCES

When dwFlags is any of the following values, you need to

input keys with required format. For details, please refer to

the Remarks section of this table:

· S4_RSA_PUBLIC_FILE

· S4_RSA_PRIVATE_KEY
 dwBufferSize [in] Length of the data to be written into the file. There are

special stipulation when dwFlags is any of the following

values:

· S4_KEY_GEN_RSA_FILE

dwBufferSize = 0

· S4_SET_LICENCES

dwBufferSize = 0

· S4_RSA_PUBLIC_FILE

dwBufferSize =

Senselock ELDeveloper Guide API Reference

- 202 -

sizeof(S4_RSA_PUBLIC_KEY)

· S4_RSA_PRIVATE_FILE

dwBufferSize =

sizeof(S4_RSA_PRIVATE_KEY)
 dwFileSize [in] Size of the file to be created or license number,

depending on the value of dwFlags：

· S4_CREATE_NEW

dwFileSize is the size of the file to be created.

Please notice that, to public file, it must be 136; to

private file, it must be 330.

· S4_SET_LICENCES

dwFileSize is the license number to be set, must be

between 1 and 255.

· Else

Must be 0.
 pdwByteWritten [out] Length of data actually written(in byte)
 dwFlags [in] Flag options, please see Remarks section for details.
 bFileType [in] File type,please see Remarks section for details.

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

Available values for flag option（dwFlags）are listed below:

S4_CREATE_NEW Create new file. By default, attribute of the newly

created executable file will be set to ―internally

read/writable‖.

S4_FILE_EXECUTE_ONLY Combined with flag S4_CREATE_NEW to create an

―internally unreadable/unwritable‖ executable file,

this flag is effective only for executable files.

S4_CREATE_PEDDING_FILE For Senselock ELhardware version 2.3 or higher, this

flag is ignored.

S4_UPDATE_FILE Update an existing file.

S4_KEY_GEN_RSA_FILE Generate a RSA key pair, can be used together with
S4_CREATE_NEW

S4_SET_LICENCES Set license number for network version dongles.

* ―Internally readable/writable‖ and ―internally unreadable/unwritable‖ mean whether or not the

objective file can be operated by SES _read()and _write(). For detail, please refer to ―the

first chapter section 1.3.2‖.

Available values for file type（bFileType）are listed below:

S4_EXE_FILE VM executable, binary objective file generated by

Keil C51 or Skit compiler.

Data process: Write the data in lpbuffer into the

objective file using binary format.

S4_XA_EXE_FILE XA executable, binary objective file generated by

Rkit.

Data process: Write the data in lpbuffer into the

objective file using binary format.

Senselock ELDeveloper Guide API Reference

- 203 -

S4_DATA_FILE Data file

Data process: Write the data in lpbuffer into the

objective file using binary format.

S4_RSA_PUBLIC_FILE RSA public key file*.

Data process: Write the data in lpbuffer into the

objective file after conversion, see the comments

below this table

S4_RSA_PRIVATE_FILE RSA private file.

Data process: Write the data in lpbuffer into the

objective file after conversion, see the comments

below this table.

0 If dwFlags is S4_KEY_GEN_RSA_FILE or

S4_SET_LICENCES,bFileType must be 0

* When writing public or private file, API does NOT write the inputted data to the file using

binary format directly, instead, it converts the inputted data content first. The data inputted must

be of public key S4_RSA_PUBLIC_KEY format and of private key S4_RSA_PRIVATE_KEY

format as defined in Senselock ELAPI‘s header file; To files of other types, the function write

directly the inputted data using binary format.

A file can‘t be erased directly once it has been created. If you want to delete a file

and free the storage space it takes completely, you must delete or empty the directory

under which the file resides.

Some IDs are reserved by system, these include：0x0000, 0x0015, 0x0016,

0x0018,0x001e,0x3f00,0x3f01,0x3f02,0x3f03,0x3f04.

For network version, the function is void invoked, and returen S4_SUCCESS.

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version （ Local

operations only）

Sample:

/* This demonstrates how to create a 1K bytes data file

 and write some information into it. */

 ……

 SENSE4_CONTEXT s4ctx = {0};

 unsigned char buff[] = “This is a test message!”;

 DWORD dwRet = 0;

 DWORD dwBytesWritten = 0;

 /* Open and verify developer PIN here… */

 /* Now create a new data file and write it. */

 dwRet = S4WriteFile(

 &s4ctx,

 “d001”, /* New file ID. */

 0, /* Write offset. */

 buff, /* Data to write. */

 sizeof(buff), /* Number of bytes to write. */

 1024, /* New file size, 1K bytes here. */

 &dwBytesWritten,

 S4_CREATE_NEW,/* Specify to create a new file. */

Senselock ELDeveloper Guide API Reference

- 204 -

 S4_DATA_FILE);/* File type. */

 if (dwRet != S4_SUCCESS)

 {

 /* Handle error here… */

 }

 ……

Senselock ELDeveloper Guide API Reference

- 205 -

9.1.13.PS4WriteFile

Local: Create or update a file under current directory. This API encapsulate

S4WriteFile()and operate directly the disk file which simplifies greatly the

process of initializing Senselock ELfile system. All the work done by this API

can also be achieved by S4WriteFile().

 This function is not a fundamental Senselock ELAPI, so only C version and

Win32 dynamic link library of it are provided. It‘s declared in the file psense4.h.

Network:Not supported

DWORD WINAPI PS4WriteFile (

 SENSE4_CONTEXT *pS4Ctx,

 LPCSTR lpszFileID,

 LPCSTR lpszPCFilePath,

 DWORD *dwFileSize,

 DWORD dwFlags,

 DWORD dwFileType,

 DWORD *pdwBytesWritten);

Parameters:

 pS4Ctx [in] Pointer to SENSE4_CONTEXT struct,pointing to an

opened Senselock ELdevice.
 lpszFileID [in] File ID.
 lpszPCFilePath [in] Disk file path, and the content of the file is the data to

be written into the dongle. There are different requirements

for the format of disk file according to different objective

file types, please refer to the explanation for file types in

Remarks section of this table. If you want just to create a

new file without writing in any content, you can set this

parameter to be NULL.
 dwFileSize [in,out] Size of the file to be created. If you want to

determine automatically the size according to the type and

content of disk file, you can set this parameter to be 0; If you

want to update an existing file, this parameter MUST be set

to 0.
 dwFlags [in] Flag options, please see Remarks section for details.
 bFileType [in] File type, please see Remarks section for details.
 pdwByteWritten [out] Length of data actually written(in byte)

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

Available values for flag option（dwFlags）are listed below:

S4_CREATE_NEW Create new file. By default, attribute of the newly

created executable file will be set to ―internally

read/writable‖.

S4_FILE_EXECUTE_ONLY Combined with flag S4_CREATE_NEW to create an

―internally unreadable/unwritable‖ executable file,

this flag is effective only to executable files.

S4_CREATE_PEDDING_FILE For Senselock ELhardware version 2.3 or higher, this

flag is ignored.

Senselock ELDeveloper Guide API Reference

- 206 -

S4_UPDATE_FILE Update an existing file.

* ―Internally readable/writable‖ and ―internally unreadable/unwritable‖ means whether or not

that file can be operated by SES _read()and _write(). For detail, please refer to the first

chapter section 1.3.2.

Available values for file type（bFileType）are listed below:

S4_EXE_FILE VM executable, binary objective file generated by

Keil C51 or Skit compiler.

Data process: Write the data in disk file into the

objective file using binary format.

S4_XA_EXE_FILE XA executable, binary objective file generated by

Rkit.

Data process: Write the data in disk file into the

objective file using binary format.

S4_HEX_FILE VM executable, binary objective file generated by

Keil C51 or Skit compiler. The difference between

this value and S4_EXE_FILE is that when this file

type is specified, the disk file inputted will be of

HEX format and API will internally convert it to

binary format automatically.

Data process: Convert the data in disk file and then

write them into the objective file.

S4_XA_HEX_FILE XA executable, binary objective file generated by

Rkit. The difference between this value and

S4_XA_EXE_FILE is: that when this file type is

specified, the disk file inputted will be of HEX

format and API will internally convert it to binary

format automatically.

Data process: Convert the data in disk file and then

write them into the objective file.

S4_DATA_FILE Data file

Data process: Write the data in disk file into the

objective file using binary format.

S4_RSA_PUBLIC_FILE RSA public key file, the data contained in the disk

file must be of public key S4_RSA_PUBLIC_KEY

format as defined in Senselock ELAPI‘s header file;

Data process: Convert the data in disk file and then

write them into the objective file.

S4_RSA_PRIVATE_FILE RSA private file, the data contained in the disk file

must be of private key S4_RSA_PRIVATE_KEY

format as defined in Senselock ELAPI‘s header file;

Data process: Convert the data in disk file and then

write them into the objective file.

A file can‘t be erased directly once it has been created. If you want to delete a file

and free the storage space it takes completely, you must delete or empty the directory

under which the file resides.

Some IDs are reserved by system, these include：0x0000, 0x0015, 0x0016,

0x0018,0x001e,0x3f00,0x3f01,0x3f02,0x3f03,0x3f04.

For network version, the function is void invoked, and returen S4_SUCCESS.

Senselock ELDeveloper Guide API Reference

- 207 -

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version （ Local

operations only）

Sample:

/* This demonstrates how to create a new XA EXF file

 and write the binary code into it.

 Suppose that the XA EXF code is stored as

 “c:\demo\demo1.hex”, which is in Intel hex format. */

 ……

 SENSE4_CONTEXT s4ctx = {0};

 DWORD dwRet = 0;

 DWORD dwBytesWritten = 0;

 DWORD dwFileSize = 0;

 /* Open and verify developer PIN here… */

 /* Now create a new XA EXF file and write it. */

 dwRet = PS4WriteFile(

 &s4ctx,

 “E001”,

 “c:\\demo\\demo1.hex”,/* Disk file. */

 &dwFileSize, /* 0, auto detect file size. */

 S4_CREATE_NEW | S4_FILE_EXECUTE_ONLY,/* No R/W. */

 S4_XA_HEX_FILE, /* File type. */

 &dwBytesWritten);

 if (dwRet != S4_SUCCESS)

 {

 /* Handle error here… */

 }

 ……

Senselock ELDeveloper Guide API Reference

- 208 -

9.1.14.S4Execute

Local:Execute VM EXF specified under current directory.

Network:Execute VM EXF specified under current module of remote network dongle.

DWORD WINAPI S4Execute (

 SENSE4_CONTEXT *pS4Ctx,

 LPSCTR lpszFileID,

 LPVOID lpInBuffer,

 DWORD dwInBufferSize,

 LPVOID lpOutBuffer,

 DWORD dwOutBufferSize,

 DWORD *dwBytesReturned);

Parameters:

 pS4Ctx [in] Pointer to SENSE4_CONTEXT struct,pointing to an

opened Senselock ELdevice.
 lpszFileID [in] ID of the EXF to be executed.
 lpInBuffer [in] Input buffer, storing the data to be transmitted in,

namely the content of communication buffer when input
 dwInBufferSize [in] Length of the inputted data
 lpOutBuffer [out] Output buffer, storing the data to be transmitted out,

namely the content of communication buffer when output
 dwOutBufferSize [in] Size of lpOutBuffer, when it is less than the length

of the data returned from inside SenseLock EL, this

function will return error indicating insufficient output

buffer space.
 dwBytesReturned [out] Length of the data actually returned from SenseLock

EL, namely the length of the data in communication buffer.

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

You must verify user PIN before invoking this API.

This API can ONLY execute VM EXF, if you want to execute XA EXF, please use

S4ExecuteEx()instead.

For local operations, the input buffer is max 250 bytes; for network operations,

input buffer is max 237 bytes.

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version

Sample:

 Refer to the section 4.2.2 ―User level access‖

Senselock ELDeveloper Guide API Reference

- 209 -

9.1.15.S4ExecuteEx

Local:Execute VM EXF or XA EXF specified under current directory.

Network:Execute Not supported.

DWORD WINAPI S4ExecuteEx (

 SENSE4_CONTEXT *pS4Ctx,

 LPSCTR lpszFileID,

 DWORD dwFlag,

 LPVOID lpInBuffer,

 DWORD dwInBufferSize,

 LPVOID lpOutBuffer,

 DWORD dwOutBufferSize,

 DWORD *dwBytesReturned);

Parameters:

 pS4Ctx [in] Pointer to SENSE4_CONTEXT struct,pointing to an

opened Senselock ELdevice.
 lpszFileID [in] ID of the EXF to be executed.
 dwFlag [in] Type of the executable：

· S4_VM_EXE VM executable file

· S4_XA_EXE XA executable file
 lpInBuffer [in] Input buffer, storing the data to be transmitted in,

namely the content of communication buffer when input
 dwInBufferSize [in] Length of the inputted data
 lpOutBuffer [out] Output buffer, storing the data to be transmitted out,

namely the content of communication buffer when output
 dwOutBufferSize [in] Size of lpOutBuffer, when it is less than the length

of the data returned from inside SenseLock EL, this

function will return error indicating insufficient output

buffer space.
 dwBytesReturned [out] Length of the data returned from SenseLock EL,

namely the length of the data in communication buffer.

Return values:

 Return S4_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

You must verify user PIN before invoking this API.

Except for the support to XA EXF, this API is almost identical with S4Execute().

While executing VM EXF file, input buffer is max 250 bytes. While executing XA

EXF file, input buffer is max 248 bytes.

For network version, the function is void invoked, and returen S4_SUCCESS.

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version

Sample:

/* Considering the sample code of section 4.2.3, we can add a flag(in

RED) in the code to indicate the destination file is a XA EXF. */

Senselock ELDeveloper Guide API Reference

- 210 -

 /* Invoke exf 0xd001. */

 ret = S4ExecuteEx(&s4ctx, “d001”, S4_XA_EXE

 input, input_len, output, output_len, &len);

 if (ret != S4_SUCCESS)

 {

 printf("Invoke 0xd001 failed! <error code = 0x%08x>\n", ret);

 S4Close(&s4ctx);

 return 1;

 }

Senselock ELDeveloper Guide API Reference

- 211 -

9.1.16.S4Startup

9.1.17.S4Cleanup

These functions has already been revoked, please do not use.

Senselock ELDeveloper Guide API Reference

- 212 -

9.2. Error Code Index

Error code Value Comment

S4_SUCCESS 0x00000000 Operation successful.

S4_UNPOWERED 0x00000001 The device has been powered off

S4_INVALID_PARAMETER 0x00000002 Invalid parameter.

S4_COMM_ERROR 0x00000003 Communication error, i.e.data transmission timeout.

S4_PROTOCOL_ERROR 0x00000004 Wrong communication protocol.

S4_DEVICE_BUSY 0x00000005 Device busy.

S4_KEY_REMOVED 0x00000006 Device removed or not connected.

S4_INSUFFICIENT_BUFFER 0x00000011 Insufficient buffer.

S4_NO_LIST 0x00000012 No device is found.

S4_GENERAL_ERROR 0x00000013 Commonly indicates not enough memory

S4_UNSUPPORTED 0x00000014 Function not supported or file system has not been

created.

S4_DEVICE_TYPE_MISMATCH 0x00000020 Device type mismatch.

S4_FILE_TYPE_MISMATCH 0x00006981 File type mismatch.

S4_FILE_SIZE_CROSS_7FFF 0x00000021 (Applied only to version 2.2 or earlier).

S4_CURRENT_DF_ISNOT_MF 0x00000201 The net module to be created isn‘t child directory of

the root directory, available for network version only.

S4_INVAILABLE_MODULE_DF 0x00000202 The current directory is not a module, available only

for network version.

S4_FILE_SIZE_TOO_LARGE 0x00000203 The file size is larger than 0x7FFF.

S4_DF_SIZE 0x00000204 The size of the specified directory is not enough.

S4_DIRECTORY_EXIST 0x00006901 Directory already exists; max level of directory is

exceeded; the directory is built completely;

Repetitive creating root directory; unset root

directory

S4_FILE_TYPE_MISMATCH 0x00006981 The device type does not match

S4_INSUFFICIENT_SECU_STATE 0x00006982 Security status not satisfied, corresponding PIN must

be verified.

S4_PIN_BLOCK 0x00006983 Device locked.

S4_APPLICATION_TEMP_BLOCK 0x00006985 Application temporarily locked.

S4_FILE_EXIST 0x00006a80 File already exists.

S4_DEVICE_UNSUPPORTED 0x00006a81 Unsupported by the device.

S4_FILE_NOT_FOUND 0x00006a82 File not found.

S4_INSUFFICIENT_SPACE 0x00006a84 Insufficient file space.

S4_OFFSET_BEYOND 0x00006B00 File offset exceeds the boundary.

S4_CRYPTO_KEY_NOT_FOUND 0x00009403 Cryptographic key not found.

S4_APPLICATION_PERM_BLOCK 0x00009303 The directory has been locked.

S4_DATA_BUFFER_LENGTH_ERROR 0x00006700 Invalid data length

S4_CODE_RANGE 0x00010000 Out of code range, generally result from stack

overflow.

S4_CODE_RESERVED_INST 0x00020000 Illegal instruction.

S4_CODE_RAM_RANGE 0x00040000 Illegal pointer to internal RAM.

S4_CODE_BIT_RANGE 0x00080000 Illegal bit variable.

S4_CODE_SFR_RANGE 0x00100000 Illegal SFR.

S4_CODE_XRAM_RANGE 0x00200000 Illegal pointer to external RAM.

S4WF_INVALID_S4CONTEXT 0x00000101 Invalid S4Context parameter(PS4WriteFile).

S4WF_INVALID_FILE_ID 0x00000102 Invalid File ID (PS4WriteFile).

S4WF_INVALID_PC_FILE 0x00000103 Invalid PC file(PS4WriteFile).

S4WF_INVALID_FLAGS 0x00000104 Invalid dwFlags parameter(PS4WriteFile).

S4WF_INVALID_FILE_SIZE 0x00000105 Invalid dwFileSize parameter (PS4WriteFile).

S4WF_INVALID_FILE_TYPE 0x00000106 Invalid dwFileType parameter (PS4WriteFile).

S4_MODULE_NOT_FOUND 0x00000301 Failed to find assigned module

S4_LICENSE_EXIST 0x00000302 License granted already

S4_USER_NOT_FOUND 0x00000303 No users found in network version

S4_LICENSE_INVALID 0x00000304 Non-effective license

S4_TIMEOUT 0x00000305 Overdue operating on network version

Senselock ELDeveloper Guide API Reference

- 213 -

S4_NETWORK_ERROR 0x00000306 Network error

S4_LICENSE_NOT_FOUND 0x00000307 No available license

S4_EXECUTE_ERROR 0x00000308 Execution error

S4_TOTALLICENSE_BEYOND 0x00000309 Exceeding total licenses

S4_MODULELICENSE_BEYOND 0x00000310 Exceeding total licenses of module

S4_DEVICE_INVALID 0x00000311 Device is not available

S4_USERPIN_ERROR 0x00000312 Verification error on User PIN

S4_MODULE_ZERO 0x00000313 Module number is 0

S4_DEVICETYPE_ERROR 0x00000314 Device type error

S4_DEVICE_START_FAILED 0x00000315 Device initiating error

S4_DEVICE_STOP_FAILED 0x00000316 Failed to stop device

S4_NET_TIMEOUT 0x00000324 Overdue communication on network version

S4_ERROR_UNKNOWN 0xffffffff Unknown error.

- 214 -

Appendix A. Cryptographic
Algorithms

Senselock ELhardware alone can provide DES/TDES、RSA、SHA1 algorithms. In real

applications however, the calculation procedure for some cryptographic algorithms must be done

on PC end. For example, you may hope to encrypt part of your file to ciphertext before software

release, and decrypt it using Senselock ELwhen running this software. In this case, you can use

software algorithms to complete the encryption process.

Algorithms in Senselock ELhardware are all of standard ones, so you can easily get various

implementations of them. That‘s one of the key features a secure algorithm must possess: it must

not depend on the algorithm itself, instead, it must depend on the confidentiality of the secret key.

That‘s also what distinguishes Senselock ELfrom other common dongles which often provide one

so-called ―black box algorithm‖ and security of it by no means can be evaluated.

SDK provides the software implementations of all the algorithms mentioned above to make it

convenient for corresponding development. You can use these algorithms‘ interface directly or use

other implementations obtained by yourself. They will do the same work.

Besides, to simplify the generation ,conversion and other operations of secret keys, SDK also

provides some key-operating function interfaces.

Corresponding libraries and header files are under the product‘s installation

directory %SDK%\support\cryptolib. Only C-version API is offered currently.

Senselock ELDeveloper Guide Cryptographic algorithms

- 215 -

A.1. Key Operating Functions

A.1.1. X_GenerateRsaKeys

Generate a RSA key pair on PC and convert it to the public/private key format

supported by Senselock ELhardware.

int WINAPI X_GenerateRsaKeys(

 COS_RSA_PUBLIC_KEY *pCosPubKey,

 COS_RSA_PRIVATE_KEY *pCosPriKey);

Parameters:

 pCosPubKey [out] Pointer to COS_RSA_PUBLIC_KEY struct which defines

the format of RSA public key inside SenseLock EL. For detail,

please refer to the Remarks section of ―rsa_enc()‖in the 8
th

chapter.
 pCosPriKey [out] Pointer to COS_RSA_PRIVATE_KEY struct which

defines the format of RSA private key inside SenseLock EL. For

detail, please refer to the Remarks section of ―rsa_enc()‖in

the eigthth chapter.

Return values:

 Return RE_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

If you want to perform RSA calculation internally in Senselock ELhardware, a RSA

key pair of corresponding format must be provided. You can use API

S4_WriteFile() to generate a key pair inside the hardware or use this

API(X_GenerateRsaKeys()) to generate a key pair and then import them using

binary mode into public/private key files inside the hardware. Please notice that the

RSA private key generated inside the hardware can NEVER be exported, and thus

can‘t be backuped.

Another usage of the key pair generated by this API is: you can save them to two

files in hard disk and when your want to debug your code, you can import these files

to virtual devices.

Requirement:

 Hardware version: Senselock EL2.x

Senselock ELDeveloper Guide Cryptographic algorithms

- 216 -

A.1.2. R_GenerateRsaKeys

Generate a RSA key pair of PKCS#1 format on PC.

int WINAPI R_GenerateRsaKeys(

 R_RSA_PUBLIC_KEY *pPubKey,

 R_RSA_PRIVATE_KEY *pPriKey);

Parameters:

 pPubKey [out] Pointer to R_RSA_PUBLIC_KEY struct,used to store the

public key.
 pPriKey [out] Pointer to R_RSA_PRIVATE_KEY struct,used to store the

private key.

Return values:

 Return RE_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

RSA key pair generated by this function can be used in the software version

cryptographic algorithms. It can also be of the format defined in Senselock ELAPI

header file(sense4.h) after some simple processing.

R_RSA_PUBLIC_KEY struct is defined as follows：

typedef struct {

unsigned int bits;

unsigned char modulus[MAX_RSA_MODULUS_LEN];

unsigned char exponent[MAX_RSA_MODULUS_LEN];

} R_RSA_PUBLIC_KEY;

R_RSA_PRIVATE_KEY struct is defined as follows：

typedef struct {

unsigned int bits;

unsigned char modulus[MAX_RSA_MODULUS_LEN];

unsigned char publicExponent[MAX_RSA_MODULUS_LEN];

unsigned char exponent[MAX_RSA_MODULUS_LEN];

unsigned char prime[2][MAX_RSA_PRIME_LEN];

unsigned char primeExponent[2][MAX_RSA_PRIME_LEN];

unsigned char coefficient[MAX_RSA_PRIME_LEN];

} R_RSA_PRIVATE_KEY;

Compared the two above structs with the structs of RSA key pair defined in header

file sense4.h and you will find that the only difference between them lies on one

struct member variable: unsigned int bits.

Requirement:

 Hardware version: hardware-independent

Senselock ELDeveloper Guide Cryptographic algorithms

- 217 -

A.1.3. X_Pub2Cos

Convert a RSA public key of PKCS#1 format to the format supported in Senselock

ELhardware.

int WINAPI X_Pub2Cos(

 COS_RSA_PUBLIC_KEY *pCosPubKey,

 R_RSA_PUBLIC_KEY *pPubKey);

Parameters:

 pCosPubKey [out] Pointer to struct COS_RSA_PUBLIC_KEY, storing the

public key of Senselock ELformat.
 pPubKey [in] Pointer to struct R_RSA_PUBLIC_KEY,storing the public

key of PKCS#1 format.

Return values:

 Return RE_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

None

Requirement:

 Hardware version: Senselock EL2.x

Senselock ELDeveloper Guide Cryptographic algorithms

- 218 -

A.1.4. X_Pri2Cos

Convert a RSA private key of PKCS#1 format to the format supported in Senselock

ELhardware.

int WINAPI X_Pri2Cos(

 COS_RSA_PRIVATE_KEY *pCosPriKey,

 R_RSA_PRIVATE_KEY *pPriKey);

Parameters:

 pCosPriKey [out] Pointer to struct COS_RSA_PRIVATE_KEY, storing the

private key of Senselock ELformat.
 pPriKey [in] Pointer to struct R_RSA_PRIVATE_KEY,storing the

private key of PKCS#1 format.

Return values:

 Return RE_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

None

Requirement:

 Hardware version: Senselock EL2.x

Senselock ELDeveloper Guide Cryptographic algorithms

- 219 -

A.1.5. X_Cos2Pub
Convert a RSA public key of the format supported in Senselock ELhardware to

PKCS#1 format.

int WINAPI X_Cos2Pub(

 R_RSA_PUBLIC_KEY *pPubKey,

 COS_RSA_PUBLIC_KEY *pCosPubKey);

Parameters:

 pPubKey [out] Pointer to struct R_RSA_PUBLIC_KEY, storing the public

key of PKCS#1 format.
 pCosPubKey [in] Pointer to struct COS_RSA_PUBLIC_KEY,storing the

public key of Senselock ELformat.

Return values:

 Return RE_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

None

Requirement:

 Hardware version: Senselock EL2.x

Senselock ELDeveloper Guide Cryptographic algorithms

- 220 -

A.1.6. X_Cos2Pri

Convert a RSA private key of the format supported in Senselock ELhardware to

PKCS#1 format.

int WINAPI X_Cos2Pri(

 R_RSA_PRIVATE_KEY *pPriKey,

 COS_RSA_PRIVATE_KEY *pCosPriKey);

Parameters:

 pPriKey [out] Pointer to struct R_RSA_PRIVATE_KEY, storing the

private key of PKCS#1 format.
 pCosPriKey [in] Pointer to struct COS_RSA_PRIVATE_KEY,storing the

private key of Senselock ELformat.

Return values:

 Return RE_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

None

Requirement:

 Hardware version: Senselock EL2.x

Senselock ELDeveloper Guide Cryptographic algorithms

- 221 -

A.2. Cryptographic Algorithm Functions

A.2.1. RSAPublicEncrypt

RSA public key encryption using PKCS#1 mode.

int WINAPI RSAPublicEncrypt(

 unsigned char *output,

 unsigned int *outputLen,

 unsigned char *input,

 unsigned int inputLen,

 R_RSA_PUBLIC_KEY *publicKey);

Parameters:

 output [out] Output cipher.
 outputLen [out] Length of the output. It will be 128 if the RSA key is of

1024 bits.
 input [in] Input plaintext
 inputLen [in] Length of input. It can‘t exceed 117 if the RSA key is of

1024 bits.
 publicKey [in] Pointer to struct R_RSA_PUBLIC_KEY, the public key

used for encryption.

Return values:

 Return RE_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

This function has completely the same PKCS encryption mode as Senselock ELSES
_rsa_enc().

Requirement:

 Hardware version: hardware-independent

Senselock ELDeveloper Guide Cryptographic algorithms

- 222 -

A.2.2. RSAPrivateDecrypt

RSA private key decryption using PKCS#1 mode.

int WINAPI RSAPrivateDecrypt(

 unsigned char *output,

 unsigned int *outputLen,

 unsigned char *input,

 unsigned int inputLen,

 R_RSA_PRIVATE_KEY *privateKey);

Parameters:

 output [out] Output plaintext.
 outputLen [out] Length of the output. It can‘t exceed 117 if the RSA key is

of 1024 bits.
 input [in] Input cipher.
 inputLen [in] Length of input. It will be 128 if the RSA key is of 1024

bits.
 privateKey [in] Pointer to struct R_RSA_PRIVATE_KEY, the private key

used for decryption.

Return values:

 Return RE_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

This function has completely the same PKCS encryption mode as Senselock ELSES
_rsa_dec().

Requirement:

 Hardware version: hardware-independent

Senselock ELDeveloper Guide Cryptographic algorithms

- 223 -

A.2.3. Sign

RSA signing using PKCS#1 mode.

int WINAPI Sign(

 int digestAlgorithm,

 unsigned char *plain,

 unsigned int plainLen,

 unsigned char *signature,

 unsigned int *signatureLen,

 R_RSA_PRIVATE_KEY *privateKey);

Parameters:

 digestAlgorithm [in] Hash algorithm used in signing.
 plain [in] Data to be signed
 plainLen [in] Length of the data to be signed.
 signature [out] Signature.
 signatureLen [in] Length of the signature. It will be 128 if the RSA key

is of 1024 bits.
 privateKey [in] Pointer to struct R_RSA_PRIVATE_KEY the private

key used for signing.

Return values:

 Return RE_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

This function has completely the same PKCS signing mode as Senselock ELSES
_rsa_sign().

Requirement:

 Hardware version: hardware-independent

Senselock ELDeveloper Guide Cryptographic algorithms

- 224 -

A.2.4. Verify

RSA signature verification using PKCS#1 mode.

int WINAPI Verify(

 int digestAlgorithm,

 unsigned char *plain,

 unsigned int plainLen,

 unsigned char *signature,

 unsigned int signatureLen,

 R_RSA_PUBLIC_KEY *publicKey);

Parameters:

 digestAlgorithm [in] Hash algorithm used in signing.
 plain [in] Original data
 plainLen [in] Length of the original data.
 signature [in] Signature.
 signatureLen [in] Length of the signature. It will be 128 if the RSA key

is of 1024 bits.
 publicKey [in] Pointer to struct R_RSA_PUIBLIC_KEY, the public

key used for signature verification.

Return values:

 Return RE_SUCCESS if verification succeeds or corresponding error code

otherwise.

Remarks:

This API has not corresponding SensIV SES. The SES _rsa_veri()can‘t handle

directly the original data and thus has minor difference with this API.

If you want to realize the same purpose using SES, you have to call

_sha1_xxx()functions to complete hash calculation first and then call

_rsa_veri (the second mode) to verify the signature.

Requirement:

 Hardware version: hardware-independent

Senselock ELDeveloper Guide Cryptographic algorithms

- 225 -

A.2.5. Digest

Hash algorithms, including SHA1、MD5、MD2.

int WINAPI Digest(

 int digestAlgorithm,

 unsigned char *plain,

 unsigned int plainLen,

 unsigned char *digest,

 unsigned int *digestLen);

Parameters:

 digestAlgorithm [in] Hash algorithm used：

· DA_MD2 MD2

· DA_MD5 MD5

· DA_SHS SHA1
 Plain [in] Message to be hashed.
 plainLen [in] Length of the message.
 Digest [out] Digest.
 digestLen [out] Length of the digest.

Return values:

 Return RE_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

None

Requirement:

 Hardware version: hardware-independent

Senselock ELDeveloper Guide Cryptographic algorithms

- 226 -

A.2.6. DES

DES algorithm–ECB mode.

int WINAPI DES(

 unsigned char *key,

 int encrypt,

 unsigned char *output,

 unsigned char *input,

 unsigned int inputLen);

Parameters:

 key [in] 8 octets secret key.
 encrypt [in] flag, 1 means encryption and 0 means decryption.
 output [out] output of encryption/decryption.
 input [in] input data.
 inputLen [in] Length of the input, must be multiple of 8.

Return values:

 Return RE_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

When used for encryption, this API is equal to SES _des_enc()and when used for

decryption, it‘s equal to SES_des_dec().

Requirement:

 Hardware version: hardware-independent

Senselock ELDeveloper Guide Cryptographic algorithms

- 227 -

A.2.7. TDES

TDES algorithm in ECB mode.

int WINAPI TDES(

 unsigned char *key,

 int encrypt,

 unsigned char *output,

 unsigned char *input,

 unsigned int inputLen);

Parameters:

 key [in] 16 octets secret key.
 encrypt [in] flag, 1 means encryption and 0 means decryption.
 output [out] output of encryption/decryption.
 input [in] input data.
 inputLen [in] Length of the input, must be multiple of 8.

Return values:

 Return RE_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

When used for encryption, this API is equal to SES _tdes_enc()and when

used for decryption, it‘s equal to SES_tdes_dec().

Requirement:

 Hardware version: hardware-independent

Senselock ELDeveloper Guide Cryptographic algorithms

- 228 -

A.3. Error Code Index

RE_SUCCESS 0x0000 Operation successful.
RE_CONTENT_ENCODING 0x0400 Wrong content encoding.
RE_DATA 0x0401 Wrong data.
RE_DIGEST_ALGORITHM 0x0402 Invalid digest algorithm.
RE_ENCODING 0x0403 Wrong encoding.
RE_KEY 0x0404 Invalid key.
RE_KEY_ENCODING 0x0405 Wrong key encoding.
RE_LEN 0x0406 Wrong length.
RE_MODULUS_LEN 0x0407 Wrong Modulus length.
RE_NEED_RANDOM 0x0408 Random number needed.
RE_PRIVATE_KEY 0x0409 Error in private key encryption.
RE_PUBLIC_KEY 0x040a Error in public key decryption.
RE_SIGNATURE 0x040b Error in signing.
RE_SIGNATURE_ENCODING 0x040c Wrong signature encoding.
RE_ENCRYPTION_ALGORITHM 0x040d Wrong encryption algorithm.

- 229 -

Appendix B. Hardware Features

Item Value Description

USB Version 1.1 low speed

CPU 16bits,16 MHz

RAM

(bytes)

VM Mode 254 + 2047

XA Mode 2047

Memory (bytes) 8 ~ 64 K

IO Buffer (bytes) 250 Can also be used as RAM. For Senselock ELNet,

this value is 244.

Working temperature -10 ~ 85 °C

- 230 -

Appendix C. SES Index

1). _exitError! Bookmark not defined.
2). _set_responseError! Bookmark not defined.
3). _openError! Bookmark not defined.
4). _closeError! Bookmark not defined.
5). _readError! Bookmark not defined.
6). _writeError! Bookmark not defined.
7). _createError! Bookmark not defined.
8). _enable_exeError! Bookmark not defined.
9). _addfError! Bookmark not defined.
10). _addError! Bookmark not defined.
11). _subfError! Bookmark not defined.
12). _subError! Bookmark not defined.
13). _multfError! Bookmark not defined.
14). _multError! Bookmark not defined.
15). _divfError! Bookmark not defined.
16). _divError! Bookmark not defined.
17). _sinfError! Bookmark not defined.
18). _sinError! Bookmark not defined.
19). _cosfError! Bookmark not defined.
20). _cosError! Bookmark not defined.
21). _tanfError! Bookmark not defined.
22). _tanError! Bookmark not defined.
23). _asinfError! Bookmark not defined.
24). _asinError! Bookmark not defined.
25). _acosfError! Bookmark not defined.
26). _acosError! Bookmark not defined.
27). _atanfError! Bookmark not defined.
28). _atanError! Bookmark not defined.
29). _atan2fError! Bookmark not defined.
30). _atan2Error! Bookmark not defined.
31). _sinhfError! Bookmark not defined.
32). _sinhError! Bookmark not defined.
33). _coshfError! Bookmark not defined.
34). _coshError! Bookmark not defined.
35). _tanhfError! Bookmark not defined.
36). _tanhError! Bookmark not defined.
37). _ceilfError! Bookmark not defined.
38). _ceilError! Bookmark not defined.
39). _floorfError! Bookmark not defined.
40). _floorError! Bookmark not defined.
41). _absfError! Bookmark not defined.
42). _absError! Bookmark not defined.
43). _fmodfError! Bookmark not defined.
44). _fmodError! Bookmark not defined.
45). _expfError! Bookmark not defined.
46). _expError! Bookmark not defined.
47). _logfError! Bookmark not defined.
48). _logError! Bookmark not defined.
49). _log10fError! Bookmark not defined.
50). _log10Error! Bookmark not defined.
51). _sqrtfError! Bookmark not defined.
52). _sqrtError! Bookmark not defined.
53). _powfError! Bookmark not defined.
54). _powError! Bookmark not defined.
55). _modfError! Bookmark not defined.
56). _frexpError! Bookmark not defined.
57). _ldexpError! Bookmark not defined.
58). _fdcmpError! Bookmark not defined.
59). _dtofError! Bookmark not defined.
60). _ftodError! Bookmark not defined.

61). _dtol Error! Bookmark not

defined.
62). _altodError! Bookmark not

defined.
63). _lltod Error! Bookmark not

defined.
64). _tdes_enc Error! Bookmark

not defined.
65). _tdes_dec Error! Bookmark

not defined.
66). _des_enc Error! Bookmark

not defined.
67). _des_dec Error! Bookmark

not defined.
68). _sha1_initError! Bookmark

not defined.
69). _sha1_update Error!

Bookmark not defined.
70). _sha1_final Error!

Bookmark not defined.
71). _rsa_enc Error! Bookmark

not defined.
72). _rsa_dec Error! Bookmark

not defined.
73). _rsa_sign Error! Bookmark

not defined.
74). _rsa_veri Error! Bookmark

not defined.
75). _rand Error! Bookmark not

defined.
76). _mem_copy Error!

Bookmark not defined.
77). _mem_move Error!

Bookmark not defined.
78). _mem_setError! Bookmark

not defined.
79). _mempool_init Error!

Bookmark not defined.
80). _malloc Error! Bookmark

not defined.
81). _calloc Error! Bookmark

not defined.
82). _realloc Error! Bookmark

not defined.
83). _free Error! Bookmark not

defined.
84). _invert Error! Bookmark

not defined.
85). _mem_cmp Error!

Bookmark not defined.
86). _set_timer Error!

Bookmark not defined.
87). _start_timer Error!

Bookmark not defined.
88). _stop_timer Error!

Bookmark not defined.
89). _get_timer Error!

Bookmark not defined.
90). _time Error! Bookmark not

defined.

深思IV产品开发手册 系统函数索引

- 231 -

91). _mktimeError! Bookmark not defined.
92). _gmtimeError! Bookmark not defined.
93). _swap_u16Error! Bookmark not defined.
94). _swap_u32Error! Bookmark not defined.
95). LE16_TO_CCError! Bookmark not defined.
96). LE32_TO_CCError! Bookmark not defined.
97). CC_TO_LE16Error! Bookmark not defined.
98). CC_TO_LE32Error! Bookmark not defined.
99). BE16_TO_CCError! Bookmark not defined.
100). BE32_TO_CCError! Bookmark not defined.
101). CC_TO_BE16Error! Bookmark not defined.
102). CC_TO_BE32Error! Bookmark not defined.
103). _atodError! Bookmark not defined.
104). DEFINE_ATError! Bookmark not defined.
105). _get_gbdataError! Bookmark not defined.

- 232 -

Appendix D. Driver Installation API

Reference

Generally speaking, the driver installer tool provided by us can meet most of the needs. If

you hope to customize your own driver installation procedure or GUI, you can use driver

installation API. In fact, the driver installer tool provided by us is also developed based on this

API.

Note: While using driver to install API, mkSetup.dll can not be invoked alone. Under the

directory of mkSetup.dll, win98, winlh64, winlh86, winxp64, winxp86 directories and contents

must be preserved unchanged, in fact, mkSetup executes thoses files to complete the

installation/uninstallation.

D.1.1. s4drv_GetDriverInfo

To get the information of drivers already installed in current system.

DWORD WINAPI s4drv_GetDriverInfo(PDRIVER_INFO pDrvInfo);

Parameters:

 pDrvInfo [out] Pointer to DRIVER_INFO struct.

Return values:

 Return ERR_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

DRIVER_INFO struct holds the driver information of current system which is

defined as follows:

typedef struct _DRIVER_VERSION

{

 DWORD DriverNum;

 DWORD Version[8];

} DRIVER_INFO, *PDRIVER_INFO;

Remarks for the struct member variables：

DriverNum Number of installed drivers in current system. For

example, if there are a driver of version 2.0.0.0 and another

driver of version 2.0.0.1 in current system, this return value

will e 2. Commonly, this number is 1 or 0.
Version Driver version. Every driver version has a corresponding

array element. For example, if there has been a driver of

version 2.0.1.0, then Version[0]=0x02000100.

Senselock ELDeveloper Guide Driver installation API Reference

- 233 -

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version

Senselock ELDeveloper Guide Driver installation API Reference

- 234 -

D.1.2. s4drv_Install

To install device driver.

DWORD WINAPI s4drv_Install(

 LPCSTR lpszDestPath,

 DWORD dwCount,

 DWORD dwFlag);

Parameters:

 lpszDestPath [in] Destination path of driver installation, and if the directory

specified by this path doesn‘t exist, this function will create it

automatically.
 dwCount [in] For Senselock ELdongle users, this parameter can just be

ignored. If one needs to install PC/SC driver(dwFlag set to be

DRV_FLAG_PCSC), he must specify this count of smart card

reader(s)(1~8)
 dwFlag [in] Two flags supported currently：

· DRV_FLAG_PCSC install PC/SC driver

· DRV_FLAG_CLEAR_OLD remove old driver(s)

(recommended)

Return values:

 Return ERR_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

Sometimes, you may need to restart your system to complete the driver installation.

To check if the system need reboot, please use s4drv_IsNeedReboot().

After calling this function correctly, the system will copy all the files needed to the

specified path. To complete driver installation, please reboot operating system(in

case of need), and plug your device into computer; If you have already plugged your

device before driver installation, please replug it.

It‘s strongly recommended that you remove the old version driver(s) when installing

new driver, or it may lead to potential errors.

For details regarding PC/SC driver, please refer to corresponding material of PC/SC

Group.

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version

Sample:

 Please refer to the sample of s4drv_IsNeedReboot().

Senselock ELDeveloper Guide Driver installation API Reference

- 235 -

D.1.3. s4drv_Uninstall

To uninstall all the driver(s) already installed in current system.

DWORD WINAPI s4drv_Uninstall();

Parameters:

 None

Return values:

 Return ERR_SUCCESS if the function succeeds or corresponding error code

otherwise.

Remarks:

Sometimes, system may need to be restarted to complete the driver uninstallation

process. To check if the system need reboot, please use

s4drv_IsNeedReboot().

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version

Sample:

 Please refer to the sample of s4drv_IsNeedReboot().

Senselock ELDeveloper Guide Driver installation API Reference

- 236 -

D.1.4. s4drv_IsNeedReboot

To check whether the operating system needs reboot.

BOOL WINAPI s4drv_IsNeedReboot();

Parameters:

 None

Return values:

 Return TRUE if the system needs reboot, FALSE otherwise.

Remarks:

To check whether or not the operating system needs reboot so as to complete the

process of driver installatin/uninstallation.

Requirement:

 Hardware version:Senselock EL2.x desktop version,network version

Sample:

/* This demonstrates how to install or uninstall Senselock

ELdevice driver using API. */

#include "stdio.h"

#include "stdlib.h"

#include "..\include\s4drv.h"

/* paramter

// -u: uninstall

// -nc: not clear old drivers

// -pcsc: install PC/SC driver

// -rd x: reader count(PC/SC only)

// -path string: the dest path of driver file

*/

BOOL isInst = TRUE;

BOOL isPcsc = FALSE;

BOOL isClearOld = TRUE;

DWORD dwReaderCount = 1;

char lpszPath[MAX_PATH] = {0};

BOOL isNeedReboot = FALSE;

void HandleArgment(char* argv[], int argc)

{

 int i;

 for(i=1; i<argc; i++)

 {

 if(0 == strcmp(argv[i], "-u"))

 isInst = FALSE;

 else if(0 == strcmp(argv[i], "-pcsc"))

 isPcsc = TRUE;

 else if(0 == strcmp(argv[i], "-nc"))

 isClearOld = FALSE;

 else if(0 == strcmp(argv[i], "-rd"))

 {

Senselock ELDeveloper Guide Driver installation API Reference

- 237 -

 if(i+1 < argc)

 dwReaderCount = atoi(argv[i+1]);

 i++;

 }

 else if(0 == strcmp(argv[i], "-path"))

 {

 if(i+1 < argc)

 strcpy(lpszPath, argv[i+1]);

 i++;

 }

 }

}

int main(int argc, char* argv[])

{

 DWORD dwRet;

 char* pointer;

 GetSystemDirectory(lpszPath, MAX_PATH);

 pointer = strstr(lpszPath, ":\\");

 pointer[2] = '\0';

 // set default path;

 strcat(lpszPath, "Program Files\\Senselock\\Driver");

 HandleArgment(argv, argc);

 if(isInst)

 {

 DWORD dwFlag = 0;

 dwFlag |= (isClearOld ? DRV_FLAG_CLEAR_OLD : 0);

 dwFlag |= (isPcsc ? DRV_FLAG_PCSC : 0);

 printf("Start to install Senselock ELDrivers...");

 dwRet = s4drv_Install(lpszPath, dwReaderCount, dwFlag);

 if(dwRet != ERR_SUCCESS)

 {

 printf("Failed! Error: 0x%08x\n", dwRet);

 return 1;

 }

 }

 else

 {

 printf("Start to uninstall Senselock ELDrivers...");

 dwRet = s4drv_Uninstall();

 if(dwRet != ERR_SUCCESS)

 {

 printf("Failed! Error: 0x%08x\n", dwRet);

 }

 }

 printf("OK!\n");

 if(s4drv_IsNeedReboot())

 printf("You must restart your system!\n");

 return 0;

}

